Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2010_13_4_a5, author = {M. V. Neshchadim}, title = {Conservation laws for a~system of diffusion reaction type with one spatial variable}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {64--69}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a5/} }
TY - JOUR AU - M. V. Neshchadim TI - Conservation laws for a~system of diffusion reaction type with one spatial variable JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2010 SP - 64 EP - 69 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a5/ LA - ru ID - SJIM_2010_13_4_a5 ER -
M. V. Neshchadim. Conservation laws for a~system of diffusion reaction type with one spatial variable. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 64-69. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a5/
[1] Dorodnitsyn V. A., Svirchevskii S. R., On Lie-Baclund groups admitted by the heat equation with a source, Preprint No 101, Keldysh Inst. Appl. Math. Acad. Sci., Moscow, 1983
[2] Boca Raton et al. (eds.), CRC Handbook of Lie Groups Analysis of Differential Equations, v. 1, Symmetries, Exacting Solutions, Concervation Laws, CRC Press, 1994
[3] Neschadim M. V., “Zakony sokhraneniya dlya sistemy tipa reaktsiya diffuziya”, Sib. zhurn. industr. matematiki, 11:4 (2008), 125–135 | MR
[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl
[5] Finikov S. P., Metod vneshnikh form Kartana, Gostekhizdat, M.–L., 1948
[6] Pommare Zh., Sistemy uravnenii s chastnymi proizvodnymi i psevdogruppy Li, Mir, M., 1983 | MR | Zbl
[7] Galaktionov V. A. i dr., “Kvazilineinoe uravnenie teploprovodnosti s istochnikom: obostrenie, lokalizatsiya, simmetrii, tochnye resheniya, asimptotiki, struktury”, Itogi nauki i tekhniki. Sovr. problemy matematiki. Noveishie dostizheniya, 28, VINITI, M., 1986, 95–205 | MR | Zbl
[8] Elkin Yu. E., “Avtovolnovye protsessy”, Matematicheskaya biologiya i bioinformatika, 1:1 (2005), 27–40
[9] Marri Dzh., Nelineinye differentsialnye uravneniya v biologii, Mir, M., 1983
[10] Polyanin A. D., “Tochnye resheniya nelineinykh sistem uravnenii diffuzii reagiruyuschikh sred i matematicheskoi biologii”, Dokl. AN, 400:5 (2005), 606–611 | MR
[11] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2002
[12] Vinogradov A. M., Krasilschik I. S., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial Press, M., 2005
[13] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Nauka, M., 1984 | MR
[14] Barannyk T., “Symmetry and exact solutions for systems of nonlinear reaction-diffusion equations”, Proc. Inst. Math. NAS Ukraine, 43:1 (2002), 80–85 | MR | Zbl
[15] Cherniha R. M., King J. R., “Lie symmetries of nonlinear multidimensional reaction-diffusion systems, I”, J. Phys. A Math. Gen., 33:2 (2000), 267–282 | DOI | MR | Zbl
[16] Cherniha R. M., King J. R., “Lie symmetries of nonlinear multidimensional reaction-diffusion systems, II”, J. Phys. A Math. Gen., 36:2 (2003), 405–425 | DOI | MR | Zbl
[17] Nikitin A. G., Wiltshire R. J., “Systems of reaction-diffusion equations and their symmetry properties”, J. Math. Phys., 42:4 (2001), 1667–1688 | DOI | MR
[18] Kerner B. S., Osipov V. V., Avtosolitony, Sovremennye problemy fiziki, 84, Nauka, M., 1991 | Zbl
[19] Ivanitskii G. R., Medvinskii A. B., Tsyganov M. A., “Ot dinamiki populyatsionnykh avtovoln, formiruemykh zhivymi kletkami, k neiroinformatike”, Uspekhi fiz. nauk, 164:10 (1994), 1041–1072
[20] Ibragimov N. H., “The answer to the question put to me by L. V. Ovsyannikov 33 years ago”, Arhives of ALGA, 3 (2006), 53–80
[21] Khamitova R. S., “Struktura gruppy i bazis zakonov sokhraneniya”, Teor. i mat. fizika, 52:2 (1982), 244–251 | MR | Zbl