Conservation laws for a~system of diffusion reaction type with one spatial variable
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 64-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a system of diffusion reaction type equations with one spatial variable we find necessary and sufficient conditions allowing nontrivial first order conservation laws. We establish a theorem on a basis for conservation laws.
Keywords: diffusion reaction type systems, conservation laws.
@article{SJIM_2010_13_4_a5,
     author = {M. V. Neshchadim},
     title = {Conservation laws for a~system of diffusion reaction type with one spatial variable},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {64--69},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a5/}
}
TY  - JOUR
AU  - M. V. Neshchadim
TI  - Conservation laws for a~system of diffusion reaction type with one spatial variable
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 64
EP  - 69
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a5/
LA  - ru
ID  - SJIM_2010_13_4_a5
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%T Conservation laws for a~system of diffusion reaction type with one spatial variable
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 64-69
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a5/
%G ru
%F SJIM_2010_13_4_a5
M. V. Neshchadim. Conservation laws for a~system of diffusion reaction type with one spatial variable. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 64-69. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a5/

[1] Dorodnitsyn V. A., Svirchevskii S. R., On Lie-Baclund groups admitted by the heat equation with a source, Preprint No 101, Keldysh Inst. Appl. Math. Acad. Sci., Moscow, 1983

[2] Boca Raton et al. (eds.), CRC Handbook of Lie Groups Analysis of Differential Equations, v. 1, Symmetries, Exacting Solutions, Concervation Laws, CRC Press, 1994

[3] Neschadim M. V., “Zakony sokhraneniya dlya sistemy tipa reaktsiya diffuziya”, Sib. zhurn. industr. matematiki, 11:4 (2008), 125–135 | MR

[4] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[5] Finikov S. P., Metod vneshnikh form Kartana, Gostekhizdat, M.–L., 1948

[6] Pommare Zh., Sistemy uravnenii s chastnymi proizvodnymi i psevdogruppy Li, Mir, M., 1983 | MR | Zbl

[7] Galaktionov V. A. i dr., “Kvazilineinoe uravnenie teploprovodnosti s istochnikom: obostrenie, lokalizatsiya, simmetrii, tochnye resheniya, asimptotiki, struktury”, Itogi nauki i tekhniki. Sovr. problemy matematiki. Noveishie dostizheniya, 28, VINITI, M., 1986, 95–205 | MR | Zbl

[8] Elkin Yu. E., “Avtovolnovye protsessy”, Matematicheskaya biologiya i bioinformatika, 1:1 (2005), 27–40

[9] Marri Dzh., Nelineinye differentsialnye uravneniya v biologii, Mir, M., 1983

[10] Polyanin A. D., “Tochnye resheniya nelineinykh sistem uravnenii diffuzii reagiruyuschikh sred i matematicheskoi biologii”, Dokl. AN, 400:5 (2005), 606–611 | MR

[11] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2002

[12] Vinogradov A. M., Krasilschik I. S., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial Press, M., 2005

[13] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Nauka, M., 1984 | MR

[14] Barannyk T., “Symmetry and exact solutions for systems of nonlinear reaction-diffusion equations”, Proc. Inst. Math. NAS Ukraine, 43:1 (2002), 80–85 | MR | Zbl

[15] Cherniha R. M., King J. R., “Lie symmetries of nonlinear multidimensional reaction-diffusion systems, I”, J. Phys. A Math. Gen., 33:2 (2000), 267–282 | DOI | MR | Zbl

[16] Cherniha R. M., King J. R., “Lie symmetries of nonlinear multidimensional reaction-diffusion systems, II”, J. Phys. A Math. Gen., 36:2 (2003), 405–425 | DOI | MR | Zbl

[17] Nikitin A. G., Wiltshire R. J., “Systems of reaction-diffusion equations and their symmetry properties”, J. Math. Phys., 42:4 (2001), 1667–1688 | DOI | MR

[18] Kerner B. S., Osipov V. V., Avtosolitony, Sovremennye problemy fiziki, 84, Nauka, M., 1991 | Zbl

[19] Ivanitskii G. R., Medvinskii A. B., Tsyganov M. A., “Ot dinamiki populyatsionnykh avtovoln, formiruemykh zhivymi kletkami, k neiroinformatike”, Uspekhi fiz. nauk, 164:10 (1994), 1041–1072

[20] Ibragimov N. H., “The answer to the question put to me by L. V. Ovsyannikov 33 years ago”, Arhives of ALGA, 3 (2006), 53–80

[21] Khamitova R. S., “Struktura gruppy i bazis zakonov sokhraneniya”, Teor. i mat. fizika, 52:2 (1982), 244–251 | MR | Zbl