Modeling and identification of a~sequence of dependent random variables with a~symmetric stable distribution
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 25-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We model a stationary random sequence whose elements have a symmetric absolutely continuous stable distribution. The joint distribution of the elements of the sequence is determined by three parameters: the Hurst parameter, a stable law parameter, and a scale parameter. We justify and implement strongly consistent methods for estimating these parameters. We compare various methods for parameter estimation.
@article{SJIM_2010_13_4_a2,
     author = {A. P. Kovalevskiǐ and V. S. Kostin and V. E. Khitsenko},
     title = {Modeling and identification of a~sequence of dependent random variables with a~symmetric stable distribution},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {25--37},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a2/}
}
TY  - JOUR
AU  - A. P. Kovalevskiǐ
AU  - V. S. Kostin
AU  - V. E. Khitsenko
TI  - Modeling and identification of a~sequence of dependent random variables with a~symmetric stable distribution
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 25
EP  - 37
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a2/
LA  - ru
ID  - SJIM_2010_13_4_a2
ER  - 
%0 Journal Article
%A A. P. Kovalevskiǐ
%A V. S. Kostin
%A V. E. Khitsenko
%T Modeling and identification of a~sequence of dependent random variables with a~symmetric stable distribution
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 25-37
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a2/
%G ru
%F SJIM_2010_13_4_a2
A. P. Kovalevskiǐ; V. S. Kostin; V. E. Khitsenko. Modeling and identification of a~sequence of dependent random variables with a~symmetric stable distribution. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 25-37. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a2/

[1] Mandelbrot B. B., Van Ness J. W., “Fractional brownian motions, fractional noises and applications”, SIAM Rev., 10 (1968), 422–437 | DOI | MR | Zbl

[2] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, Fakty. Modeli, Fazis, M., 1998

[3] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[4] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman and Hall, New York–London, 1994 | MR | Zbl

[5] Nolan J. P., “An algorithm for evaluating stable densities in Zolotarev's (M) parameterization”, Math. Comput. Model., 29 (1999), 229–233 | DOI | Zbl

[6] Zakrevskaya N. S., Kovalevskii A. P., “Algoritm identifikatsii fraktalnogo brounovskogo dvizheniya po raznosti otsenok”, Sb. nauch. trudov NGTU, 2004, no. 2(36), 290–36

[7] Arkashov N. S., Borisov I. S., “Gaussovskaya approksimatsiya protsessov chastnykh summ skolzyaschikh srednikh”, Sib. mat. zhurnal, 45:6 (2004), 1221–1255 | MR | Zbl

[8] Zolotarev V. M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986 | MR | Zbl

[9] Ryzhikov Yu., Vychislitelnye metody, BKhV-Peterburg, SPb., 2007

[10] Jennane R., Harba R., Jacquet G., “Analysis methods for fractional brownian motion: theory and comparative results”, Traitement du Signal, 13:4 (1996), 289–302 | Zbl

[11] Voevodin V. V., Tyrtyshnikov E. E., Vychislitelnye protsessy s teplitsevymi matritsami, Nauka, M., 1987 | MR | Zbl

[12] Skorokhod A. V., Elementy teorii veroyatnostei i sluchainykh protsessov, Vischa shkola, Kiev, 1980 | MR | Zbl

[13] Borovkov A. A., Matematicheskaya statistika, Nauka, Novosibirsk, 1997 | MR | Zbl

[14] Kovalevskii A. P., “Modifitsirovannyi znakovyi metod testirovaniya fraktalnosti gaussovskogo shuma”, Probl. peredachi informatsii, 44:1 (2008), 45–58 | MR | Zbl

[15] Yaglom A. M., Korrelyatsionnaya teoriya statsionarnykh sluchainykh funktsii, Gidrometeoizdat, L., 1981

[16] Fedunets N. I., Chernikov Yu. G., Metody optimizatsii, Gornaya kniga, M., 2009