Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2010_13_4_a2, author = {A. P. Kovalevskiǐ and V. S. Kostin and V. E. Khitsenko}, title = {Modeling and identification of a~sequence of dependent random variables with a~symmetric stable distribution}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {25--37}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a2/} }
TY - JOUR AU - A. P. Kovalevskiǐ AU - V. S. Kostin AU - V. E. Khitsenko TI - Modeling and identification of a~sequence of dependent random variables with a~symmetric stable distribution JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2010 SP - 25 EP - 37 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a2/ LA - ru ID - SJIM_2010_13_4_a2 ER -
%0 Journal Article %A A. P. Kovalevskiǐ %A V. S. Kostin %A V. E. Khitsenko %T Modeling and identification of a~sequence of dependent random variables with a~symmetric stable distribution %J Sibirskij žurnal industrialʹnoj matematiki %D 2010 %P 25-37 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a2/ %G ru %F SJIM_2010_13_4_a2
A. P. Kovalevskiǐ; V. S. Kostin; V. E. Khitsenko. Modeling and identification of a~sequence of dependent random variables with a~symmetric stable distribution. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 25-37. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a2/
[1] Mandelbrot B. B., Van Ness J. W., “Fractional brownian motions, fractional noises and applications”, SIAM Rev., 10 (1968), 422–437 | DOI | MR | Zbl
[2] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, v. 1, Fakty. Modeli, Fazis, M., 1998
[3] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[4] Samorodnitsky G., Taqqu M. S., Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman and Hall, New York–London, 1994 | MR | Zbl
[5] Nolan J. P., “An algorithm for evaluating stable densities in Zolotarev's (M) parameterization”, Math. Comput. Model., 29 (1999), 229–233 | DOI | Zbl
[6] Zakrevskaya N. S., Kovalevskii A. P., “Algoritm identifikatsii fraktalnogo brounovskogo dvizheniya po raznosti otsenok”, Sb. nauch. trudov NGTU, 2004, no. 2(36), 290–36
[7] Arkashov N. S., Borisov I. S., “Gaussovskaya approksimatsiya protsessov chastnykh summ skolzyaschikh srednikh”, Sib. mat. zhurnal, 45:6 (2004), 1221–1255 | MR | Zbl
[8] Zolotarev V. M., Sovremennaya teoriya summirovaniya nezavisimykh sluchainykh velichin, Nauka, M., 1986 | MR | Zbl
[9] Ryzhikov Yu., Vychislitelnye metody, BKhV-Peterburg, SPb., 2007
[10] Jennane R., Harba R., Jacquet G., “Analysis methods for fractional brownian motion: theory and comparative results”, Traitement du Signal, 13:4 (1996), 289–302 | Zbl
[11] Voevodin V. V., Tyrtyshnikov E. E., Vychislitelnye protsessy s teplitsevymi matritsami, Nauka, M., 1987 | MR | Zbl
[12] Skorokhod A. V., Elementy teorii veroyatnostei i sluchainykh protsessov, Vischa shkola, Kiev, 1980 | MR | Zbl
[13] Borovkov A. A., Matematicheskaya statistika, Nauka, Novosibirsk, 1997 | MR | Zbl
[14] Kovalevskii A. P., “Modifitsirovannyi znakovyi metod testirovaniya fraktalnosti gaussovskogo shuma”, Probl. peredachi informatsii, 44:1 (2008), 45–58 | MR | Zbl
[15] Yaglom A. M., Korrelyatsionnaya teoriya statsionarnykh sluchainykh funktsii, Gidrometeoizdat, L., 1981
[16] Fedunets N. I., Chernikov Yu. G., Metody optimizatsii, Gornaya kniga, M., 2009