Sufficient stability conditions and stabilizing control design for delay differential systems of a~special type
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 118-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper introduces some sufficient conditions for uniform and asymptotic global stability as well as the algorithms for design of stabilizing control for special systems like cascaded (triangular) systems and integrator chains. The results are presented in terms of semidefinite Lyapunov functions, and they hold for nonlinear nonautonomous systems. Application of the results proposed is illustrated by some classical examples.
Keywords: stability, stabilization, time-delay, Lyapunov function.
@article{SJIM_2010_13_4_a10,
     author = {N. O. Sedova},
     title = {Sufficient stability conditions and stabilizing control design for delay differential systems of a~special type},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {118--130},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a10/}
}
TY  - JOUR
AU  - N. O. Sedova
TI  - Sufficient stability conditions and stabilizing control design for delay differential systems of a~special type
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 118
EP  - 130
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a10/
LA  - ru
ID  - SJIM_2010_13_4_a10
ER  - 
%0 Journal Article
%A N. O. Sedova
%T Sufficient stability conditions and stabilizing control design for delay differential systems of a~special type
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 118-130
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a10/
%G ru
%F SJIM_2010_13_4_a10
N. O. Sedova. Sufficient stability conditions and stabilizing control design for delay differential systems of a~special type. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 118-130. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a10/

[1] Andreev A. S., Ustoichivost neavtonomnykh funktsionalno-differentsialnykh uravnenii, izd. UlGU, Ulyanovsk, 2005

[2] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[3] Razumikhin B. S., Ustoichivost ereditarnykh sistem, Nauka, M., 1988 | MR

[4] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[5] Pavlikov S. V., “Znakopostoyannye funktsionaly Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnogo uravneniya”, Prikl. matematiki i mekhanika, 71:3 (2007), 377–388 | MR | Zbl

[6] Sedova N. O., “Globalnaya asimptoticheskaya ustoichivost i stabilizatsiya nelineinykh sistem s posledeistviem”, Trudy 9 Mezhdunar. Chetaevskoi konferentsii “Analiticheskaya mekhanika, ustoichivost i upravlenie dvizheniem”, v. 2, Irkutsk, 2007, 208–223

[7] Sedova N., “On employment of semidefinite functions in stability of delayed equations”, J. Math. Anal. Appl., 281:1 (2003), 313–325 | MR

[8] Sedova N. O., “Vyrozhdennye funktsii v issledovanii asimptoticheskoi ustoichivosti reshenii funktsionalno-differentsialnykh uravnenii”, Mat. zametki, 78:3 (2005), 468–472 | MR | Zbl

[9] Lakshmikantham V., “Lyapunov function and a basic inequality in delay-differential equations”, Arch. Rational Mech. Anal., 7:1 (1962), 305–310 | DOI | MR

[10] Sedova N. O., “Globalnaya asimptoticheskaya ustoichivost i stabilizatsiya v nelineinoi kaskadnoi sisteme s zapazdyvaniem”, Izv. vuzov. Matematika, 2008, no. 11, 68–79 | MR | Zbl

[11] Iggidr A., Kalitine B., Outbib R., “Semidefinite Lyapunov functions. Stability and stabilization”, Math. Control Signals Systems, 6 (1996), 95–106 | DOI | MR

[12] Kaliora G., Astolfi A., “Nonlinear control of feedforward systems with bounded signals”, IEEE Trans. Automat. Control, 49:11 (2004), 1975–1990 | DOI | MR

[13] Zhou B., Duan G.-R., Li Z.-Y., “On improving transient performance in global control of multiple integrators system by bounded feedback”, Systems Control Lett., 57:10 (2008), 867–875 | DOI | MR | Zbl

[14] Kharitonov V. I. Niculescu S.-I., Moreno J., Michels W., “Static output feedback stabilization problem: necessary conditions for multiple delay controllers”, IEEE Trans. Automat. Control, 50:1 (2005), 82–86 | DOI | MR

[15] Mazenc F., Mondie S., Niculescu S.-I., “Global asymptotic stabilization for chains of integrators with a delay in the input”, Proc. 40 IEEE Conf. on Decision and Control, Orlando, 2001, 1843–1848

[16] Niculescu S.-I., Michiels W., “Stabilizing a chain of integrators using multiple delays”, IEEE Trans. Automat. Control, 49, no. 5, 2004, 802–817 | MR

[17] Sedova N. O., “Pryamoi metod Lyapunova v reshenii zadach stabilizatsii i slezheniya s zapazdyvayuschei obratnoi svyazyu”, Trudy In-ta sistemnogo analiza RAN. Dinamika neodnorodnykh sistem, 42:1 (2009), 31–37

[18] Khusainov D. Ya., Shatyrko A. V., Metod funktsii Lyapunova v issledovanii ustoichivosti differentsialno-funktsionalnykh sistem, Izd-vo Kiev. un-ta, Kiev, 1997 | MR | Zbl

[19] Jimenez S., Yu W., “Stable synchronization control for two ball and beam systems”, Proc. ICEEE-2007 (Mexico, Sep. 5–7, 2007), Mexiko, 2007, 290–293

[20] Golubev Yu. F., “Optimalnoe po bystrodeistviyu upravlenie peremescheniem neustoichivogo sterzhnya”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2008, no. 5, 42–50 | MR | Zbl

[21] Ibanez C. A., Frias O. G., “Controlling the inverted pendulum by means of a nested saturation function”, Nonlinear Dynam., 53:4 (2007), 273–280 | DOI | MR

[22] Ibanez C. A., Frias O. G., Castanon M. S., “Lyapunov-based controller for the inverted pendulum cart system”, Nonlinear Dynam., 40:4 (2005), 367–374 | DOI | MR | Zbl

[23] Bazilevich Yu. N., “Tochnaya dekompozitsiya lineinykh sistem”, Elektronnyi nauchnyi zhurnal “Issledovano v Rossii”, 2006 http://zhurnal.ape.relarn.ru/articles/2006/018.pdf

[24] Pliss V. A., “Printsip svedeniya v teorii ustoichivosti dvizheniya”, Izv. AN SSSR. Ser. mat., 28:6 (1964), 1297–1324 | MR | Zbl

[25] Michiels W., Sepulchre R., Roose D., “Robustness of nonlinear delay equations w.r.t. bounded input perturbations”, Proc. 14 Internat. Symp. Math. Theory of Networks and Systems (MTNS2000), Perpignan, 2000, 1–5

[26] Michiels W., Sepulchre R., Roose D., Moreau L., “A perturbation approach to the stabilization of nonlinear cascade systems with time-delay”, Proc. 41 IEEE Conf. Decision and Control, Las Vegas, 2002, 1898–1903

[27] Panteley E., Loria A., “On global uniform asymptotic stability of nonlinear time-varying systems in cascade”, Systems Control Lett., 33:2 (1998), 131–138 | DOI | MR