Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2010_13_4_a10, author = {N. O. Sedova}, title = {Sufficient stability conditions and stabilizing control design for delay differential systems of a~special type}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {118--130}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a10/} }
TY - JOUR AU - N. O. Sedova TI - Sufficient stability conditions and stabilizing control design for delay differential systems of a~special type JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2010 SP - 118 EP - 130 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a10/ LA - ru ID - SJIM_2010_13_4_a10 ER -
%0 Journal Article %A N. O. Sedova %T Sufficient stability conditions and stabilizing control design for delay differential systems of a~special type %J Sibirskij žurnal industrialʹnoj matematiki %D 2010 %P 118-130 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a10/ %G ru %F SJIM_2010_13_4_a10
N. O. Sedova. Sufficient stability conditions and stabilizing control design for delay differential systems of a~special type. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 4, pp. 118-130. http://geodesic.mathdoc.fr/item/SJIM_2010_13_4_a10/
[1] Andreev A. S., Ustoichivost neavtonomnykh funktsionalno-differentsialnykh uravnenii, izd. UlGU, Ulyanovsk, 2005
[2] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR
[3] Razumikhin B. S., Ustoichivost ereditarnykh sistem, Nauka, M., 1988 | MR
[4] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR
[5] Pavlikov S. V., “Znakopostoyannye funktsionaly Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnogo uravneniya”, Prikl. matematiki i mekhanika, 71:3 (2007), 377–388 | MR | Zbl
[6] Sedova N. O., “Globalnaya asimptoticheskaya ustoichivost i stabilizatsiya nelineinykh sistem s posledeistviem”, Trudy 9 Mezhdunar. Chetaevskoi konferentsii “Analiticheskaya mekhanika, ustoichivost i upravlenie dvizheniem”, v. 2, Irkutsk, 2007, 208–223
[7] Sedova N., “On employment of semidefinite functions in stability of delayed equations”, J. Math. Anal. Appl., 281:1 (2003), 313–325 | MR
[8] Sedova N. O., “Vyrozhdennye funktsii v issledovanii asimptoticheskoi ustoichivosti reshenii funktsionalno-differentsialnykh uravnenii”, Mat. zametki, 78:3 (2005), 468–472 | MR | Zbl
[9] Lakshmikantham V., “Lyapunov function and a basic inequality in delay-differential equations”, Arch. Rational Mech. Anal., 7:1 (1962), 305–310 | DOI | MR
[10] Sedova N. O., “Globalnaya asimptoticheskaya ustoichivost i stabilizatsiya v nelineinoi kaskadnoi sisteme s zapazdyvaniem”, Izv. vuzov. Matematika, 2008, no. 11, 68–79 | MR | Zbl
[11] Iggidr A., Kalitine B., Outbib R., “Semidefinite Lyapunov functions. Stability and stabilization”, Math. Control Signals Systems, 6 (1996), 95–106 | DOI | MR
[12] Kaliora G., Astolfi A., “Nonlinear control of feedforward systems with bounded signals”, IEEE Trans. Automat. Control, 49:11 (2004), 1975–1990 | DOI | MR
[13] Zhou B., Duan G.-R., Li Z.-Y., “On improving transient performance in global control of multiple integrators system by bounded feedback”, Systems Control Lett., 57:10 (2008), 867–875 | DOI | MR | Zbl
[14] Kharitonov V. I. Niculescu S.-I., Moreno J., Michels W., “Static output feedback stabilization problem: necessary conditions for multiple delay controllers”, IEEE Trans. Automat. Control, 50:1 (2005), 82–86 | DOI | MR
[15] Mazenc F., Mondie S., Niculescu S.-I., “Global asymptotic stabilization for chains of integrators with a delay in the input”, Proc. 40 IEEE Conf. on Decision and Control, Orlando, 2001, 1843–1848
[16] Niculescu S.-I., Michiels W., “Stabilizing a chain of integrators using multiple delays”, IEEE Trans. Automat. Control, 49, no. 5, 2004, 802–817 | MR
[17] Sedova N. O., “Pryamoi metod Lyapunova v reshenii zadach stabilizatsii i slezheniya s zapazdyvayuschei obratnoi svyazyu”, Trudy In-ta sistemnogo analiza RAN. Dinamika neodnorodnykh sistem, 42:1 (2009), 31–37
[18] Khusainov D. Ya., Shatyrko A. V., Metod funktsii Lyapunova v issledovanii ustoichivosti differentsialno-funktsionalnykh sistem, Izd-vo Kiev. un-ta, Kiev, 1997 | MR | Zbl
[19] Jimenez S., Yu W., “Stable synchronization control for two ball and beam systems”, Proc. ICEEE-2007 (Mexico, Sep. 5–7, 2007), Mexiko, 2007, 290–293
[20] Golubev Yu. F., “Optimalnoe po bystrodeistviyu upravlenie peremescheniem neustoichivogo sterzhnya”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2008, no. 5, 42–50 | MR | Zbl
[21] Ibanez C. A., Frias O. G., “Controlling the inverted pendulum by means of a nested saturation function”, Nonlinear Dynam., 53:4 (2007), 273–280 | DOI | MR
[22] Ibanez C. A., Frias O. G., Castanon M. S., “Lyapunov-based controller for the inverted pendulum cart system”, Nonlinear Dynam., 40:4 (2005), 367–374 | DOI | MR | Zbl
[23] Bazilevich Yu. N., “Tochnaya dekompozitsiya lineinykh sistem”, Elektronnyi nauchnyi zhurnal “Issledovano v Rossii”, 2006 http://zhurnal.ape.relarn.ru/articles/2006/018.pdf
[24] Pliss V. A., “Printsip svedeniya v teorii ustoichivosti dvizheniya”, Izv. AN SSSR. Ser. mat., 28:6 (1964), 1297–1324 | MR | Zbl
[25] Michiels W., Sepulchre R., Roose D., “Robustness of nonlinear delay equations w.r.t. bounded input perturbations”, Proc. 14 Internat. Symp. Math. Theory of Networks and Systems (MTNS2000), Perpignan, 2000, 1–5
[26] Michiels W., Sepulchre R., Roose D., Moreau L., “A perturbation approach to the stabilization of nonlinear cascade systems with time-delay”, Proc. 41 IEEE Conf. Decision and Control, Las Vegas, 2002, 1898–1903
[27] Panteley E., Loria A., “On global uniform asymptotic stability of nonlinear time-varying systems in cascade”, Systems Control Lett., 33:2 (1998), 131–138 | DOI | MR