Models for the steady-state creep of transversally isotropic materials with different contraction and expansion characteristics
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 113-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose constitutive equations for describing the steady-state creep of transversally isotropic materials with different contraction and expansion properties. We assume that the creep coefficient is independent of the sample cut-off direction.
Mots-clés : constitutive equations
Keywords: steady-state creep, transversal isotropy, multimodulus behavior.
@article{SJIM_2010_13_3_a12,
     author = {A. I. Oleǐnikov},
     title = {Models for the steady-state creep of transversally isotropic materials with different contraction and expansion characteristics},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {113--116},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a12/}
}
TY  - JOUR
AU  - A. I. Oleǐnikov
TI  - Models for the steady-state creep of transversally isotropic materials with different contraction and expansion characteristics
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 113
EP  - 116
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a12/
LA  - ru
ID  - SJIM_2010_13_3_a12
ER  - 
%0 Journal Article
%A A. I. Oleǐnikov
%T Models for the steady-state creep of transversally isotropic materials with different contraction and expansion characteristics
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 113-116
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a12/
%G ru
%F SJIM_2010_13_3_a12
A. I. Oleǐnikov. Models for the steady-state creep of transversally isotropic materials with different contraction and expansion characteristics. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 3, pp. 113-116. http://geodesic.mathdoc.fr/item/SJIM_2010_13_3_a12/

[1] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966 | Zbl

[2] Annin B. D., “Modeli uprugoplasticheskogo deformirovaniya transversalno-izotropnykh materialov”, Sib. zhurn. industr. matematiki, 2:2 (1999), 197–200

[3] Nikitenko A. F., Polzuchest i dlitelnaya prochnost metallicheskikh materialov, izd. NGASU, Novosibirsk, 1997

[4] Nikitenko A. F., Tsvelodub I. Yu., “O polzuchesti anizotropnykh materialov s raznymi svoistvami na rastyazhenie i szhatie”, Dinamika sploshnoi sredy, 43, 1979, 69–78

[5] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Fizmatgiz, M., 1962 | MR

[6] Sosnin O. V., “Ob anizotropnoi polzuchesti materialov”, PMTF, 1965, no. 6, 11–21