Acoustics equations in elastic porous media
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 98-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the acoustics equations in elastic porous media which had been obtained by the author by averaging the exact dimensionless equations that describe the joint motion of an elastic solid skeleton and a viscous fluid in the pores on the microscopic level. The small parameter of this model is the ratio $\varepsilon$ of the average pore size $l$ to the characteristic size $L$ of the physical region under consideration. The averaged equations (the limit regimes of the exact model as $\varepsilon$ tends to zero) depend on the dimensionless coefficients of the model, which either depend weakly on the small parameter, or are small or large as this parameter tends to zero. On assuming that the solid skeleton is periodic we analyze the particular form of acoustics equations for the simplest periodic structures.
Keywords: Stokes and Lamé equations, two-scale convergence, acoustics equations.
@article{SJIM_2010_13_2_a9,
     author = {A. M. Meǐrmanov},
     title = {Acoustics equations in elastic porous media},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {98--110},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a9/}
}
TY  - JOUR
AU  - A. M. Meǐrmanov
TI  - Acoustics equations in elastic porous media
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 98
EP  - 110
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a9/
LA  - ru
ID  - SJIM_2010_13_2_a9
ER  - 
%0 Journal Article
%A A. M. Meǐrmanov
%T Acoustics equations in elastic porous media
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 98-110
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a9/
%G ru
%F SJIM_2010_13_2_a9
A. M. Meǐrmanov. Acoustics equations in elastic porous media. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 98-110. http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a9/

[1] Biot M. A., “Generalized theory of acoustic propagation in porous dissipative media”, J. Acoustic Soc. America, 34 (1962), 1256–1264 | MR

[2] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, J. Acoustic Soc. America, 70:4 (1981), 1140–1146 | DOI | Zbl

[3] Nguetseng G., “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl

[4] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. mat. zhurn., 48:3 (2007), 645–667 | MR | Zbl

[5] Meirmanov A., “A description of acoustic seismic wave propagation in elastic porous media via homogenizaton”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[6] Ciz R., Saenger E. H., Gurevich B., “Pore scale numerical modeling of elastic wave dispersion and attenuation in periodic system of alterning solid and viscous fluid layers”, J. Acoustic Soc. America, 120:2 (2006), 642–648 | DOI