On the instability of hyperbolic systems on the plane under small periodic perturbation
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 85-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a strictly hyperbolic linear first order system in the half-strip $\Pi=\{(x,t)\colon0$ we consider the mixed problem generating a group of unitary operators. In the case of a periodic perturbation we propose a method for finding the frequencies for which the perturbed system develops parametric resonance. We illustrate the method with a system of two equations.
Keywords: the mixed problem for a hyperbolic system on the plane, instability of solutions, averaging method.
@article{SJIM_2010_13_2_a8,
     author = {N. A. Lyul'ko},
     title = {On the instability of hyperbolic systems on the plane under small periodic perturbation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {85--97},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a8/}
}
TY  - JOUR
AU  - N. A. Lyul'ko
TI  - On the instability of hyperbolic systems on the plane under small periodic perturbation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 85
EP  - 97
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a8/
LA  - ru
ID  - SJIM_2010_13_2_a8
ER  - 
%0 Journal Article
%A N. A. Lyul'ko
%T On the instability of hyperbolic systems on the plane under small periodic perturbation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 85-97
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a8/
%G ru
%F SJIM_2010_13_2_a8
N. A. Lyul'ko. On the instability of hyperbolic systems on the plane under small periodic perturbation. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 85-97. http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a8/

[1] Brushlinskii K. V., “O roste resheniya smeshannoi zadachi v sluchae nepolnoty sobstvennykh funktsii”, Izv. AN SSSR. Ser. mat., 23:6 (1959), 893–912 | Zbl

[2] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[3] Yakubovich V. A., Starzhinskii V. M., Parametricheskii rezonans v lineinykh sistemakh, Nauka, M., 1987 | MR

[4] Derguzov V. I., “Dostatochnye usloviya ustoichivosti gamiltonovykh uravnenii s neogranichennymi periodicheskimi operatornymi koeffitsientami”, Mat. sb., 64(106):3 (1964), 419–435 | MR | Zbl

[5] Fomin V. N., Matematicheskaya teoriya parametricheskogo rezonansa v lineinykh raspredelennykh sistemakh, Izd-vo LGU, L., 1972 | MR

[6] Belonosov V. S., Dorovskii V. N., Belonosov A. S., Dorovskii S. V., “Gidrodinamika gazosoderzhaschikh sloistykh sistem”, Uspekhi mekhaniki, 3:2 (2005), 37–70

[7] Krylov N. M., Bogolyubov N. N., Vvedenie v nelineinuyu mekhaniku, Izd-vo AN USSR, Kiev, 1937

[8] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1958 | MR

[9] Dzhakalya G. E. O., Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979 | MR

[10] Mitropolskii Yu. A., Khoma G. P., Gromyak M. I., Asimptoticheskie metody issledovaniya kvazivolnovykh uravnenii giperbolicheskogo tipa, Nauk. dumka, Kiev, 1991 | MR

[11] Khapaev M. M., Usrednenie v teorii ustoichivosti, Izd-vo AN USSR, Kiev, 1986 | MR

[12] Abolinya V. E., Myshkis A. D., “Smeshannaya zadacha dlya pochti lineinoi giperbolicheskoi sistemy na ploskosti”, Mat. sb., 50(92):4 (1960), 423–442 | MR | Zbl

[13] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Fizmatgiz, M., 1970 | MR