Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2010_13_2_a6, author = {V. A. Klyachin and E. A. Pabat}, title = {The $C^1$-approximation of the level surfaces of functions defined on irregular meshes}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {69--78}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a6/} }
TY - JOUR AU - V. A. Klyachin AU - E. A. Pabat TI - The $C^1$-approximation of the level surfaces of functions defined on irregular meshes JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2010 SP - 69 EP - 78 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a6/ LA - ru ID - SJIM_2010_13_2_a6 ER -
%0 Journal Article %A V. A. Klyachin %A E. A. Pabat %T The $C^1$-approximation of the level surfaces of functions defined on irregular meshes %J Sibirskij žurnal industrialʹnoj matematiki %D 2010 %P 69-78 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a6/ %G ru %F SJIM_2010_13_2_a6
V. A. Klyachin; E. A. Pabat. The $C^1$-approximation of the level surfaces of functions defined on irregular meshes. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 69-78. http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a6/