Constructive methods in nonlinear control theory problems
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 30-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear control problems of transferring a substance from one state to the other given boundary data. We define second order differential operators with three time-independent coefficients. Our constructive analytical methods use in particular the Burman–Lagrange inversion formula for analytic functions. We give formulas for solutions to control problems in some particular cases of initial and boundary data. In addition to theoretical study we attempt, basing on a symbolic computation system, to implement some algorithms and programs to automatically generate the formulas that yield solutions to control problems.
Keywords: inverse problems, control theory.
@article{SJIM_2010_13_2_a3,
     author = {Yu. E. Anikonov and Yu. V. Krivtsov and M. V. Neshchadim},
     title = {Constructive methods in nonlinear control theory problems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {30--45},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a3/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - Yu. V. Krivtsov
AU  - M. V. Neshchadim
TI  - Constructive methods in nonlinear control theory problems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 30
EP  - 45
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a3/
LA  - ru
ID  - SJIM_2010_13_2_a3
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A Yu. V. Krivtsov
%A M. V. Neshchadim
%T Constructive methods in nonlinear control theory problems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 30-45
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a3/
%G ru
%F SJIM_2010_13_2_a3
Yu. E. Anikonov; Yu. V. Krivtsov; M. V. Neshchadim. Constructive methods in nonlinear control theory problems. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 2, pp. 30-45. http://geodesic.mathdoc.fr/item/SJIM_2010_13_2_a3/

[1] Anikonov Yu. E., Formulas in Inverse and Ill-Posed Problems, VSP, Utrecht, 1997 | MR | Zbl

[2] Prilepko A. I., Orlovsky D. B., Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, M. Dekker, N.Y., 2000 | MR | Zbl

[3] Anikonov Yu. E., Lorenzi A., “Explisit representation for the solution to a parabolic differential identification problem in Banach space”, J. Inverse Ill-Posed Probl., 15:7 (2007), 669–683 | DOI | MR

[4] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, v. 1, Fizmatgiz, M., 1963

[5] Aizenberg L. A., Yuzhakov A. N., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979

[6] Anikonov Yu. E., Neschadim M. V., Analiticheskie predstavleniya reshenii ryada obratnykh zadach matematicheskoi fiziki, Preprint No 218, In-t matematiki SO RAN, Novosibirsk, 2009, 32 pp.

[7] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[8] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[9] Anikonov Yu. E., K teorii konstruktivnogo issledovaniya obratnykh zadach dlya evolyutsionnykh uravnenii, Preprint No 143, In-t matematiki SO RAN, Novosibirsk, 2004, 32 pp.

[10] Anikonov Yu. E., “Konstruktivnye metody issledovaniya obratnykh zadach dlya evolyutsionnykh uravnenii”, Sib. zhurn. industr. matematiki, 11:2 (2008), 3–20 | MR

[11] Kolmogorov A. N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, Uspekhi mat. nauk, 1938, no. 5, 5–41