A mathematical model for the dynamics of a~population affected by pollutants
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 109-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a mathematical model for the dynamics of a population whose members are affected by ingested pollutants. We assume that a pollutant decomposition product is harmful for the individua and raises the incidence of their death. We describe the equations of the model and study the properties of their solutions, including the existence and stability of equilibrium states. We obtain conditions for the degeneration of the population and conditions guaranteeing its sustainment at nonzero stationary levels. We include the results of a numerical simulation.
Keywords: population dynamics, nonstationary medium, mathematical model
Mots-clés : influence of pollutants.
@article{SJIM_2010_13_1_a9,
     author = {N. V. Pertsev and G. E. Tsaregorodtseva},
     title = {A mathematical model for the dynamics of a~population affected by pollutants},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {109--120},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a9/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - G. E. Tsaregorodtseva
TI  - A mathematical model for the dynamics of a~population affected by pollutants
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 109
EP  - 120
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a9/
LA  - ru
ID  - SJIM_2010_13_1_a9
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A G. E. Tsaregorodtseva
%T A mathematical model for the dynamics of a~population affected by pollutants
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 109-120
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a9/
%G ru
%F SJIM_2010_13_1_a9
N. V. Pertsev; G. E. Tsaregorodtseva. A mathematical model for the dynamics of a~population affected by pollutants. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 109-120. http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a9/

[1] Poluektov R. A., Pykh Yu. A., Shvytov I. A., Dinamicheskie modeli ekologicheskikh sistem, Gidrometeoizdat, L., 1980

[2] Fedorov V. D., Gilmanov T. G., Ekologiya, Izd-vo MGU, M., 1980 | Zbl

[3] Svirezhev Yu. M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987 | MR | Zbl

[4] Abrosov N. S., Bogolyubov A. G., Ekologicheskie i geneticheskie zakonomernosti sosuschestvovaniya i koevolyutsii vidov, Nauka, Novosibirsk, 1988 | MR | Zbl

[5] Abrosov N. S., “Ekologicheskie faktory i mekhanizmy formirovaniya vidovogo raznoobraziya ekosistem i problema sovmestimosti vidov”, Ekologiya v Rossii na rubezhe XXI veka, Nauch. mir, M., 1999, 54–69

[6] Hallam T. G., Clark C. E., Lassiter R. R., “Effects of toxicants on populations: A qualitative approach. I. Equilibrium environment exposure”, Ecol. Model., 18 (1983), 291–304 | DOI | Zbl

[7] Hallam T. G., Clark C. E., Jordan G. S., “Effects of toxicants on populations: A qualitative approach. II. First order kinetics”, J. Math. Biol., 18 (1983), 25–37 | MR | Zbl

[8] Hallam T. G., De Luna J. L., “Effects of toxicants on populations: A qualitative approach. III. Environmental and food chain pathways”, J. Theor. Biol., 109 (1984), 411–429 | DOI

[9] Ma Z., Gui G., Wang W., “Persistence and extinction of a population in a polluted environment”, Math. Biosci., 101 (1990), 75–97 | DOI | MR | Zbl

[10] Freedman H. I., Shukla J. B., “Models for the effect of toxicant in single-species and predatorprey systems”, J. Math. Biol., 30 (1991), 15–30 | DOI | MR | Zbl

[11] Dubey B., “Modelling the effect of toxicant on forestry resources”, Indian J. Appl. Math., 28 (1997), 1–12 | MR | Zbl

[12] Dubey B., Hussain J., “Modelling the interaction of two biological species in a polluted environment”, J. Math. Anal. Appl., 246 (2000), 58–79 | DOI | MR | Zbl

[13] Jinxiao P., Zhen J., Zhien M., “Thresholds of survival for an $n$-dimensional Volterramutualistic system in a polluted environment”, J. Math. Anal. Appl., 252 (2000), 519–531 | DOI | MR | Zbl

[14] Xiao Y., Chen L., “Effects of toxicants on a stage-structured population growth model”, Appl. Math. Comput., 123 (2001), 63–73 | DOI | MR | Zbl

[15] Liu B., Chen L., Zhang Y., “The effects of impulsive toxicant input on a population in a polluted environment”, J. Biol. Sys., 11:3 (2003), 265–274 | DOI | Zbl

[16] Krestin S. V., Rozenberg G. S., “Ob odnom mekhanizme “tsveteniya vody” v vodokhranilische ravninnogo tipa”, Biofizika, 41:3 (1996), 650–654

[17] Naresh R., Sundar S., Shukla J. Modelling the effect of an intermediate toxic product formed by uptake of a toxicant on plant biomass, Appl. Math. Comput., 182 (2006), 151–160 | DOI | MR | Zbl

[18] Feng Z., Liu R., DeAngelis D. J., “Plant-herbivore interactions mediated by plant toxicity”, Theor. Popul. Biol., 73 (2008), 449–459

[19] Mukherjee D., “Persistence and global stability of a population in a polluted environment with delay”, J. Biol. Sys., 10:3 (2002), 225–232 | DOI | Zbl

[20] Karelina R. O., Pertsev N. V., “Postroenie dvustoronnikh otsenok dlya reshenii nekotorykh sistem differentsialnykh uravnenii s posledeistviem”, Sib. zhurn. industr. matematiki, 8:4(24) (2005), 60–72 | MR | Zbl

[21] Pichugina A. N., “Integrodifferentsialnaya model populyatsii, podverzhennoi vozdeistviyu vrednykh veschestv”, Sib. zhurn. industr. matematiki, 7:4(20) (2004), 130–140 | MR | Zbl

[22] Li Z., Chen F., “Extinction in periodic competitive stage-structured Lotka–Volterra model with effects of toxic substances”, J. Comput. Appl. Math., 231 (2009), 143–153 | DOI | MR | Zbl

[23] Dubey B., Hussain J., “Nonlinear models for the survival of two competing species dependent on resource in industrial environments”, Nonlinear Analysis: Real World Applications, 4 (2003), 21–44 | DOI | MR | Zbl

[24] Pertsev N. V., Tsaregorodtseva G. E., Pichugina A. N., “Analiz ustoichivosti polozhenii ravnovesiya odnoi modeli populyatsionnoi dinamiki”, Vest. Omsk. gos. un-ta, 2009, no. 2, 46–49

[25] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974 | MR

[26] M. A. Krasnoselskii i dr. (red.), Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[27] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967 | Zbl

[28] Obolenskii A. Yu., “Ob ustoichivosti reshenii avtonomnykh sistem Vazhevskogo s zapazdyvaniem”, Ukr. mat. zhurn., 35:5 (1983), 574–579 | MR

[29] Deri I., Pertsev N. V., “Ob ustoichivosti polozhenii ravnovesiya funktsionalno-differentsialnykh uravnenii zapazdyvayuschego tipa, obladayuschikh svoistvom smeshannoi monotonnosti”, Dokl. AN SSSR, 297:1 (1987), 23–25 | MR

[30] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR

[31] Dyakonov V. P., Matlab 6/6.1/6.5 + Simulink 4/5 v matematike i modelirovanii, Polnoe rukovodstvo polzovatelya, SOLON-Press, M., 2003