A numerical method for simulating three-dimensional convection
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 95-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the three-dimensional convection of a fluid in a rectangular parallelepiped with isothermic horizontal boundary free from tangent stresses and heated from below. We propose a special spectral difference numerical method for calculating an approximation of the second order in space and the first order in time. Linear analysis of this numerical method showed that the method predicts correctly (with a good quantitative fit in the long wavelength range and a qualitative fit in the short wavelength range) the spectral characteristics of the differential problem for practical values of mesh sizes in time, space, and overcriticity. For testing we simulated two-dimensional cylindrical and turbulent Rayleigh–Bénard convection for the supercriticity equal to 2.2 and 950 and the Prandtl number equal to 10.
Keywords: modeling, hydrodynamics, heat transfer, stochasticity.
Mots-clés : convection, turbulence
@article{SJIM_2010_13_1_a8,
     author = {I. B. Palymskiǐ},
     title = {A numerical method for simulating three-dimensional convection},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {95--108},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a8/}
}
TY  - JOUR
AU  - I. B. Palymskiǐ
TI  - A numerical method for simulating three-dimensional convection
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 95
EP  - 108
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a8/
LA  - ru
ID  - SJIM_2010_13_1_a8
ER  - 
%0 Journal Article
%A I. B. Palymskiǐ
%T A numerical method for simulating three-dimensional convection
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 95-108
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a8/
%G ru
%F SJIM_2010_13_1_a8
I. B. Palymskiǐ. A numerical method for simulating three-dimensional convection. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 95-108. http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a8/

[1] Kerr R. M., “Rayleigh number scaling in numerical convection”, J. Fluid Mech., 310 (1996), 139–179 | DOI | Zbl

[2] Hartlep T., Tilgner A., Busse F. H., “Large scale structures in Rayleigh–Benard convection at high Rayleigh numbers”, Phys. Rev. Lett., 91:6 (2003), 064501, 4 pp. | DOI

[3] Malevsky A. V., “Spline-characteristic method for simulation of convective turbulence”, J. Comput. Phys., 123:2 (1996), 466–475 | DOI | Zbl

[4] Verzicco R., Camussi R., “Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell”, J. Fluid Mech., 477 (2003), 19–49 | DOI | Zbl

[5] Shishkina O., Wagner C., “Analysis of thermal dissipation rates in turbulent Rayleigh–Benard convection”, J. Fluid Mech., 546 (2006), 5–60

[6] Van Reeuwijk M., JonkerH. J. J., Hanjalic K., “Identification of the wind in Rayleigh–Benard convection”, Phys. Fluids., 17:4 (2005), 051704, 4 pp.

[7] Grotzbach G., “Direct numerical simulation of laminar and turbulent Benard convection”, J. Fluid Mech., 119 (1982), 27–53 | DOI

[8] Travis B., Olson P., Schubert G., “The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection”, J. Fluid Mech., 216 (1990), 71–91 | DOI

[9] Arter W., “Nonlinear Rayleigh–Benard convection with square planform”, J. Fluid Mech., 152 (1985), 391–418 | DOI | Zbl

[10] Cortese T., Balachandar S., “Vortical nature of thermal plumes in turbulent convection”, Phys. Fluids. A, 5:12 (1993), 3226–3232 | DOI | Zbl

[11] Curry J. H., Herring J. R., Loncaric J., Orszag S. A., “Order and disorder in two- and threedimensional Benard convection”, J. Fluid Mech., 147 (1984), 1–38 | DOI | Zbl

[12] Goldhirsch I., Pelz R. B., Orszag S. A., “Numerical simulation of thermal convection in a twodimensional finite box”, J. Fluid Mech., 199 (1989), 1–28 | DOI | MR | Zbl

[13] Gertsenshtein S. Ya., Rodichev E. B., Shmidt V. M., “Vzaimodeistvie trekhmernykh voln vo vraschayuschemsya gorizontalnom sloe zhidkosti, podogrevaemom snizu”, Dokl. AN SSSR, 238:3 (1978), 545–548

[14] Thual O., “Zero-Prandtl-number convection”, J. Fluid Mech., 240 (1992), 229–258 | DOI | Zbl

[15] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999

[16] Goldstein R. J., Graham D. J., “Stability of a horizontal fluid with zero shear boundaries”, Phys. Fluids, 12:6 (1969), 1133–1137 | DOI

[17] Palymskii I. B., “Chislennoe issledovanie spektrov turbulentnoi konvektsii Releya–Benara”, Nelineinaya dinamika, 4:2 (2008), 145–156

[18] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972

[19] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[20] Nikitin N. V., Polezhaev V. I., “Trekhmernye effekty perekhodnykh i turbulentnykh rezhimov teplovoi gravitatsionnoi konvektsii v metode Chokhralskogo”, Izv. RAN. Ser. MZhG, 1999, no. 6, 81–90 | Zbl

[21] Nikitin N. V., “Spektralno-konechnoraznostnyi metod rascheta turbulentnykh techenii neszhimaemykh zhidkostei v trubakh i kanalakh”, Zhurn. vychisl. matematiki i mat. fiziki, 34:6 (1994), 909–925 | MR | Zbl

[22] Palymskii I. B., “Lineinyi i nelineinyi analiz chislennogo metoda rascheta konvektivnykh techenii”, Sib. zhurn. vychisl. matematiki, 7:2 (2004), 143–163

[23] Rozhdestvenskii B. L., Stoinov M. I., Algoritmy integrirovaniya uravnenii Nave–Stoksa, imeyuschie analogi zakonam sokhraneniya massy, impulsa i energii, Preprint No 119, In-t prikladnoi matematiki AN SSSR, M., 1987, 28 pp. | MR

[24] Babenko K. I., Rakhmanov A. I., Chislennoe issledovanie dvumernoi konvektsii, Preprint No 118, In-t prikladnoi matematiki AN SSSR, M., 1988, 26 pp. | Zbl

[25] Palymskii I. B., “Metod chislennogo modelirovaniya konvektivnykh techenii”, Vychisl. tekhnologii, 5:6 (2000), 53–61 | MR

[26] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii pri vysokoi nadkritichnosti”, Uspekhi mekhaniki, 2006, no. 4, 3–28

[27] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii, rol granichnykh uslovii”, Izv. RAN. Ser. MZhG, 2007, no. 4, 61–71

[28] Krishnamurti R., Howard L., “Large-scale generation in turbulent convection”, Proc. Nat. Acad. Sci. USA, 78:4 (1981), 1981–1985 | DOI

[29] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984 | Zbl

[30] Belotserkovskii O. M., Oparin A. M., Chislennyi eksperiment v turbulentnosti: Ot poryadka k khaosu, Nauka, M., 2000 | MR

[31] Farhadieh R., Tankin R. S., “Interferometric study of two-dimensional Benard convection cells”, J. Fluid Mech., 66:4 (1974), 739–752 | DOI

[32] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR | Zbl

[33] Niemela J. J., Skrbek L., Sreenivasan K. R., Donnelly R. J., “Turbulent convection at very high Rayleigh numbers”, Nature, 404:20 (2000), 837–840 | DOI

[34] Wu X.-Z., Kadanoff L., Libchaber A., Sano M., “Frequency power spectrum of temperature fluctuations in free convection”, Phys. Rev. Lett., 64:18 (1990), 2140–2143 | DOI

[35] Shang X.-D., Xia K.-Q., “Scaling of the velocity power spectra in turbulent thermal convection”, Phys. Rev. E, 64 (2001), 065301, 4 pp. | DOI

[36] Frik P. G., Turbulentnost: podkhody i modeli, In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2003