Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2010_13_1_a8, author = {I. B. Palymskiǐ}, title = {A numerical method for simulating three-dimensional convection}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {95--108}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a8/} }
I. B. Palymskiǐ. A numerical method for simulating three-dimensional convection. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 95-108. http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a8/
[1] Kerr R. M., “Rayleigh number scaling in numerical convection”, J. Fluid Mech., 310 (1996), 139–179 | DOI | Zbl
[2] Hartlep T., Tilgner A., Busse F. H., “Large scale structures in Rayleigh–Benard convection at high Rayleigh numbers”, Phys. Rev. Lett., 91:6 (2003), 064501, 4 pp. | DOI
[3] Malevsky A. V., “Spline-characteristic method for simulation of convective turbulence”, J. Comput. Phys., 123:2 (1996), 466–475 | DOI | Zbl
[4] Verzicco R., Camussi R., “Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell”, J. Fluid Mech., 477 (2003), 19–49 | DOI | Zbl
[5] Shishkina O., Wagner C., “Analysis of thermal dissipation rates in turbulent Rayleigh–Benard convection”, J. Fluid Mech., 546 (2006), 5–60
[6] Van Reeuwijk M., JonkerH. J. J., Hanjalic K., “Identification of the wind in Rayleigh–Benard convection”, Phys. Fluids., 17:4 (2005), 051704, 4 pp.
[7] Grotzbach G., “Direct numerical simulation of laminar and turbulent Benard convection”, J. Fluid Mech., 119 (1982), 27–53 | DOI
[8] Travis B., Olson P., Schubert G., “The transition from two-dimensional to three-dimensional planforms in infinite-Prandtl-number thermal convection”, J. Fluid Mech., 216 (1990), 71–91 | DOI
[9] Arter W., “Nonlinear Rayleigh–Benard convection with square planform”, J. Fluid Mech., 152 (1985), 391–418 | DOI | Zbl
[10] Cortese T., Balachandar S., “Vortical nature of thermal plumes in turbulent convection”, Phys. Fluids. A, 5:12 (1993), 3226–3232 | DOI | Zbl
[11] Curry J. H., Herring J. R., Loncaric J., Orszag S. A., “Order and disorder in two- and threedimensional Benard convection”, J. Fluid Mech., 147 (1984), 1–38 | DOI | Zbl
[12] Goldhirsch I., Pelz R. B., Orszag S. A., “Numerical simulation of thermal convection in a twodimensional finite box”, J. Fluid Mech., 199 (1989), 1–28 | DOI | MR | Zbl
[13] Gertsenshtein S. Ya., Rodichev E. B., Shmidt V. M., “Vzaimodeistvie trekhmernykh voln vo vraschayuschemsya gorizontalnom sloe zhidkosti, podogrevaemom snizu”, Dokl. AN SSSR, 238:3 (1978), 545–548
[14] Thual O., “Zero-Prandtl-number convection”, J. Fluid Mech., 240 (1992), 229–258 | DOI | Zbl
[15] Getling A. V., Konvektsiya Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1999
[16] Goldstein R. J., Graham D. J., “Stability of a horizontal fluid with zero shear boundaries”, Phys. Fluids, 12:6 (1969), 1133–1137 | DOI
[17] Palymskii I. B., “Chislennoe issledovanie spektrov turbulentnoi konvektsii Releya–Benara”, Nelineinaya dinamika, 4:2 (2008), 145–156
[18] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972
[19] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[20] Nikitin N. V., Polezhaev V. I., “Trekhmernye effekty perekhodnykh i turbulentnykh rezhimov teplovoi gravitatsionnoi konvektsii v metode Chokhralskogo”, Izv. RAN. Ser. MZhG, 1999, no. 6, 81–90 | Zbl
[21] Nikitin N. V., “Spektralno-konechnoraznostnyi metod rascheta turbulentnykh techenii neszhimaemykh zhidkostei v trubakh i kanalakh”, Zhurn. vychisl. matematiki i mat. fiziki, 34:6 (1994), 909–925 | MR | Zbl
[22] Palymskii I. B., “Lineinyi i nelineinyi analiz chislennogo metoda rascheta konvektivnykh techenii”, Sib. zhurn. vychisl. matematiki, 7:2 (2004), 143–163
[23] Rozhdestvenskii B. L., Stoinov M. I., Algoritmy integrirovaniya uravnenii Nave–Stoksa, imeyuschie analogi zakonam sokhraneniya massy, impulsa i energii, Preprint No 119, In-t prikladnoi matematiki AN SSSR, M., 1987, 28 pp. | MR
[24] Babenko K. I., Rakhmanov A. I., Chislennoe issledovanie dvumernoi konvektsii, Preprint No 118, In-t prikladnoi matematiki AN SSSR, M., 1988, 26 pp. | Zbl
[25] Palymskii I. B., “Metod chislennogo modelirovaniya konvektivnykh techenii”, Vychisl. tekhnologii, 5:6 (2000), 53–61 | MR
[26] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii pri vysokoi nadkritichnosti”, Uspekhi mekhaniki, 2006, no. 4, 3–28
[27] Palymskii I. B., “Chislennoe modelirovanie dvumernoi konvektsii, rol granichnykh uslovii”, Izv. RAN. Ser. MZhG, 2007, no. 4, 61–71
[28] Krishnamurti R., Howard L., “Large-scale generation in turbulent convection”, Proc. Nat. Acad. Sci. USA, 78:4 (1981), 1981–1985 | DOI
[29] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe modelirovanie protsessov teplo- i massoobmena, Nauka, M., 1984 | Zbl
[30] Belotserkovskii O. M., Oparin A. M., Chislennyi eksperiment v turbulentnosti: Ot poryadka k khaosu, Nauka, M., 2000 | MR
[31] Farhadieh R., Tankin R. S., “Interferometric study of two-dimensional Benard convection cells”, J. Fluid Mech., 66:4 (1974), 739–752 | DOI
[32] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988 | MR | Zbl
[33] Niemela J. J., Skrbek L., Sreenivasan K. R., Donnelly R. J., “Turbulent convection at very high Rayleigh numbers”, Nature, 404:20 (2000), 837–840 | DOI
[34] Wu X.-Z., Kadanoff L., Libchaber A., Sano M., “Frequency power spectrum of temperature fluctuations in free convection”, Phys. Rev. Lett., 64:18 (1990), 2140–2143 | DOI
[35] Shang X.-D., Xia K.-Q., “Scaling of the velocity power spectra in turbulent thermal convection”, Phys. Rev. E, 64 (2001), 065301, 4 pp. | DOI
[36] Frik P. G., Turbulentnost: podkhody i modeli, In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2003