An additive third order method for solving rigid nonautonomous problems
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 84-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an additive method of the third order of accuracy for solving rigid nonautonomous problems. We obtain inequalities for controlling the precision of calculations and stability of the numerical algorithm. We include the results of some simulations.
Keywords: rigid problems, additive method, control of precision and stability.
@article{SJIM_2010_13_1_a7,
     author = {E. A. Novikov},
     title = {An additive third order method for solving rigid nonautonomous problems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {84--94},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a7/}
}
TY  - JOUR
AU  - E. A. Novikov
TI  - An additive third order method for solving rigid nonautonomous problems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 84
EP  - 94
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a7/
LA  - ru
ID  - SJIM_2010_13_1_a7
ER  - 
%0 Journal Article
%A E. A. Novikov
%T An additive third order method for solving rigid nonautonomous problems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 84-94
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a7/
%G ru
%F SJIM_2010_13_1_a7
E. A. Novikov. An additive third order method for solving rigid nonautonomous problems. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 84-94. http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a7/

[1] Cooper G. J., Sayfy A., “Additive Runge–Kutta methods for stiff ordinary differential equations”, Math. Comp., 40:161 (1983), 207–218 | DOI | MR | Zbl

[2] Novikov E. A., “Neodnorodnyi metod vtorogo poryadka dlya zhestkikh sistem”, Vychisl. tekhnologii, 10:2 (2005), 74–86 | Zbl

[3] Novikov E. A., Tuzov A. O., “Neodnorodnyi metod tretego poryadka dlya additivnykh zhestkikh sistem”, Mat. modelirovanie, 19:6 (2007), 61–70 | MR | Zbl

[4] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[5] Novikov E. A., Novikov V. A., Yumatova L. A., “Zamorazhivanie matritsy Yakobi v metode tipa Rozenbroka vtorogo poryadka tochnosti”, Zhurn. vychisl. matematiki i mat. fiziki, 27:3 (1987), 385–390 | MR | Zbl

[6] Novikov E. A., Yavnye metody dlya zhestkikh sistem, Nauka, Novosibirsk, 1997 | MR

[7] Kampowski W., Rentrop P., Schmidt W., “Classication and numerical simulation of electric circuits”, Surveys Math. Indust., 2:1 (1992), 23–65 | MR

[8] Novikov A. E., Novikov E. A., Shornikov Yu. V., “Approksimatsiya matritsy Yakobi v (2,2)-metode resheniya zhestkikh zadach”, Dokl. AN VSh RF, 1:10 (2008), 30–43

[9] Radhakrishnan K., Hindmarsh A. C., Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations, LLNL report UCRL-ID-113855, December 1993

[10] Merson R. H., “An operationalmethods for integration processes”, Proc. Symp. on Data Proc. Weapons Research Establishment, Salisbury, 1957, 58–59