On a~numerical method for solving the Cauchy problem for an operator differential equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 34-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a projection-difference method for solving the Cauchy problem for an operator differential equation in a Hilbert space with the principal selfadjoint operator $A(t)$ and the subordinate linear operator $K(t)$. For approximation equations constructed with the Faedo–Galerkin method we discretize with respect to time using the Crank–Nicolson scheme. We estimate the errors of approximate solutions and the errors for fractional powers of the principal operator $A(t)$. We apply the method to solving an initial boundary value problem.
@article{SJIM_2010_13_1_a2,
     author = {P. V. Vinogradova},
     title = {On a~numerical method for solving the {Cauchy} problem for an operator differential equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {34--45},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/}
}
TY  - JOUR
AU  - P. V. Vinogradova
TI  - On a~numerical method for solving the Cauchy problem for an operator differential equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 34
EP  - 45
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/
LA  - ru
ID  - SJIM_2010_13_1_a2
ER  - 
%0 Journal Article
%A P. V. Vinogradova
%T On a~numerical method for solving the Cauchy problem for an operator differential equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 34-45
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/
%G ru
%F SJIM_2010_13_1_a2
P. V. Vinogradova. On a~numerical method for solving the Cauchy problem for an operator differential equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 34-45. http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/

[1] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967 | MR

[2] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[3] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 754–757 | MR

[4] Zarubin A. G., Tiunchik M. F., “O metode Rote–Galerkina dlya odnogo klassa lineinykh nestatsionarnykh uravnenii”, Differents. uravneniya, 19:12 (1983), 2141–2148 | MR | Zbl

[5] Oya P. E., “O skhodimosti i ustoichivosti metoda Galerkina dlya parabolicheskikh uravnenii s differentsiruemymi operatorami”, Uchen. zapiski Tartusk. un-ta, 374 (1975), 194–210

[6] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. uravneniya, 11:7 (1975), 1269–1277 | MR | Zbl

[7] Smagin V. V., “Srednekvadratichnye otsenki pogreshnosti proektsionno-raznostnogo metoda dlya parabolicheskikh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 40:6 (2000), 908–919 | MR | Zbl

[8] Smagin V. V., “Energeticheskie otsenki pogreshnosti proektsionno-raznostnogo metoda so skhemoi Kranka–Nikolson dlya parabolicheskogo uravneniya”, Sib. mat. zhurn., 42:3 (2001), 670–682 | MR | Zbl

[9] Zlotnik A. A., Turetaev I. D., “O tochnykh otsenkakh pogreshnosti i optimalnosti dvukhsloinykh ekonomichnykh metodov resheniya uravneniya teploprovodnosti”, Dokl. AN SSSR, 272:6 (1983), 1306–1311 | MR | Zbl

[10] Turetaev I. D., “Tochnye otsenki gradienta pogreshnosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii v proizvolnoi oblasti”, Zhurn. vychisl. matematiki i mat. fiziki, 26:11 (1986), 1748–1751 | MR

[11] Polichka A. E., Sobolevskii P. E., “Nekotorye svoistva skhemy Kranka–Nikolson”, Vychisleniya s razryazhennymi matritsami, Mater. Vsesoyuz. konf., Izd. VTs SO AN SSSR, Novosibirsk, 1981, 115–122

[12] Vinogradova P. V., “Otsenki pogreshnosti proektsionno-raznostnogometoda dlya lineinogo differentsialno-operatornogo uravneniya”, Differents. uravneniya, 44:7 (2008), 942–951 | MR | Zbl

[13] Vinogradova P., “Convergence estimates of a projection-difference method for an operatordifferential equation”, J. Comput. Appl. Math., 231 (2009), 1–10 | DOI | MR | Zbl

[14] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[15] Vinogradova P., Zarubin A., “Projection method for Cauchy problem for an operator-differential equation”, Numer. Func. Anal. Optim., 30:1–2 (2009), 148–167 | DOI | MR | Zbl

[16] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR

[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[18] Solonnikov V. A., “Ob otsenkakh v $L_p$ reshenii ellipticheskikh i parabolicheskikh sistem”, Tr. MIAN SSSR, 102, 1967, 137–160 | MR

[19] Glushko V. P., Krein S. G., “Neravenstva dlya norm proizvodnykh v prostranstvakh $L_p$ s vesom”, Sib. mat. zhurn., 1:3 (1960), 343–382 | Zbl