On a~numerical method for solving the Cauchy problem for an operator differential equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 34-45

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a projection-difference method for solving the Cauchy problem for an operator differential equation in a Hilbert space with the principal selfadjoint operator $A(t)$ and the subordinate linear operator $K(t)$. For approximation equations constructed with the Faedo–Galerkin method we discretize with respect to time using the Crank–Nicolson scheme. We estimate the errors of approximate solutions and the errors for fractional powers of the principal operator $A(t)$. We apply the method to solving an initial boundary value problem.
@article{SJIM_2010_13_1_a2,
     author = {P. V. Vinogradova},
     title = {On a~numerical method for solving the {Cauchy} problem for an operator differential equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {34--45},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/}
}
TY  - JOUR
AU  - P. V. Vinogradova
TI  - On a~numerical method for solving the Cauchy problem for an operator differential equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2010
SP  - 34
EP  - 45
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/
LA  - ru
ID  - SJIM_2010_13_1_a2
ER  - 
%0 Journal Article
%A P. V. Vinogradova
%T On a~numerical method for solving the Cauchy problem for an operator differential equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2010
%P 34-45
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/
%G ru
%F SJIM_2010_13_1_a2
P. V. Vinogradova. On a~numerical method for solving the Cauchy problem for an operator differential equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 34-45. http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/