Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2010_13_1_a2, author = {P. V. Vinogradova}, title = {On a~numerical method for solving the {Cauchy} problem for an operator differential equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {34--45}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/} }
TY - JOUR AU - P. V. Vinogradova TI - On a~numerical method for solving the Cauchy problem for an operator differential equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2010 SP - 34 EP - 45 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/ LA - ru ID - SJIM_2010_13_1_a2 ER -
P. V. Vinogradova. On a~numerical method for solving the Cauchy problem for an operator differential equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 13 (2010) no. 1, pp. 34-45. http://geodesic.mathdoc.fr/item/SJIM_2010_13_1_a2/
[1] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967 | MR
[2] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[3] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 754–757 | MR
[4] Zarubin A. G., Tiunchik M. F., “O metode Rote–Galerkina dlya odnogo klassa lineinykh nestatsionarnykh uravnenii”, Differents. uravneniya, 19:12 (1983), 2141–2148 | MR | Zbl
[5] Oya P. E., “O skhodimosti i ustoichivosti metoda Galerkina dlya parabolicheskikh uravnenii s differentsiruemymi operatorami”, Uchen. zapiski Tartusk. un-ta, 374 (1975), 194–210
[6] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. uravneniya, 11:7 (1975), 1269–1277 | MR | Zbl
[7] Smagin V. V., “Srednekvadratichnye otsenki pogreshnosti proektsionno-raznostnogo metoda dlya parabolicheskikh uravnenii”, Zhurn. vychisl. matematiki i mat. fiziki, 40:6 (2000), 908–919 | MR | Zbl
[8] Smagin V. V., “Energeticheskie otsenki pogreshnosti proektsionno-raznostnogo metoda so skhemoi Kranka–Nikolson dlya parabolicheskogo uravneniya”, Sib. mat. zhurn., 42:3 (2001), 670–682 | MR | Zbl
[9] Zlotnik A. A., Turetaev I. D., “O tochnykh otsenkakh pogreshnosti i optimalnosti dvukhsloinykh ekonomichnykh metodov resheniya uravneniya teploprovodnosti”, Dokl. AN SSSR, 272:6 (1983), 1306–1311 | MR | Zbl
[10] Turetaev I. D., “Tochnye otsenki gradienta pogreshnosti proektsionno-raznostnykh skhem dlya parabolicheskikh uravnenii v proizvolnoi oblasti”, Zhurn. vychisl. matematiki i mat. fiziki, 26:11 (1986), 1748–1751 | MR
[11] Polichka A. E., Sobolevskii P. E., “Nekotorye svoistva skhemy Kranka–Nikolson”, Vychisleniya s razryazhennymi matritsami, Mater. Vsesoyuz. konf., Izd. VTs SO AN SSSR, Novosibirsk, 1981, 115–122
[12] Vinogradova P. V., “Otsenki pogreshnosti proektsionno-raznostnogometoda dlya lineinogo differentsialno-operatornogo uravneniya”, Differents. uravneniya, 44:7 (2008), 942–951 | MR | Zbl
[13] Vinogradova P., “Convergence estimates of a projection-difference method for an operatordifferential equation”, J. Comput. Appl. Math., 231 (2009), 1–10 | DOI | MR | Zbl
[14] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[15] Vinogradova P., Zarubin A., “Projection method for Cauchy problem for an operator-differential equation”, Numer. Func. Anal. Optim., 30:1–2 (2009), 148–167 | DOI | MR | Zbl
[16] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989 | MR
[17] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[18] Solonnikov V. A., “Ob otsenkakh v $L_p$ reshenii ellipticheskikh i parabolicheskikh sistem”, Tr. MIAN SSSR, 102, 1967, 137–160 | MR
[19] Glushko V. P., Krein S. G., “Neravenstva dlya norm proizvodnykh v prostranstvakh $L_p$ s vesom”, Sib. mat. zhurn., 1:3 (1960), 343–382 | Zbl