The Groups of Motions of Two-Dimensional Helmholtz Geometries as Solutions to Functional Equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 4, pp. 12-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finding the local groups of all motions of two-dimensional Helmholtz geometries, which reduces to solving functional equations.
Keywords: phenomenologically symmetric geometry, the group of motions, functional equation.
@article{SJIM_2009_12_4_a1,
     author = {R. A. Bogdanova},
     title = {The {Groups} of {Motions} of {Two-Dimensional} {Helmholtz} {Geometries} as {Solutions} to {Functional} {Equations}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {12--22},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a1/}
}
TY  - JOUR
AU  - R. A. Bogdanova
TI  - The Groups of Motions of Two-Dimensional Helmholtz Geometries as Solutions to Functional Equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2009
SP  - 12
EP  - 22
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a1/
LA  - ru
ID  - SJIM_2009_12_4_a1
ER  - 
%0 Journal Article
%A R. A. Bogdanova
%T The Groups of Motions of Two-Dimensional Helmholtz Geometries as Solutions to Functional Equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2009
%P 12-22
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a1/
%G ru
%F SJIM_2009_12_4_a1
R. A. Bogdanova. The Groups of Motions of Two-Dimensional Helmholtz Geometries as Solutions to Functional Equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 4, pp. 12-22. http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a1/

[1] Mikhailichenko G. G., “Dvumernye geometrii”, Dokl. AN SSSR, 260:4 (1981), 803–805 | MR

[2] Gelmgolts G., “O faktakh, lezhaschikh v osnovanii geometrii”, Ob osnovaniyakh geometrii, Gostekhizdat, M., 1956, 366–388

[3] Fikhtengolts G. M., Osnovy matematicheskogo analiza, T. 2, Lan, SPb., 1999, 201–211

[4] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973, 11–59 | MR