The Groups of Motions of Two-Dimensional Helmholtz Geometries as Solutions to Functional Equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 4, pp. 12-22
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of finding the local groups of all motions of two-dimensional Helmholtz geometries, which reduces to solving functional equations.
Keywords:
phenomenologically symmetric geometry, the group of motions, functional equation.
@article{SJIM_2009_12_4_a1,
author = {R. A. Bogdanova},
title = {The {Groups} of {Motions} of {Two-Dimensional} {Helmholtz} {Geometries} as {Solutions} to {Functional} {Equations}},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {12--22},
year = {2009},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a1/}
}
TY - JOUR AU - R. A. Bogdanova TI - The Groups of Motions of Two-Dimensional Helmholtz Geometries as Solutions to Functional Equations JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2009 SP - 12 EP - 22 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a1/ LA - ru ID - SJIM_2009_12_4_a1 ER -
R. A. Bogdanova. The Groups of Motions of Two-Dimensional Helmholtz Geometries as Solutions to Functional Equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 4, pp. 12-22. http://geodesic.mathdoc.fr/item/SJIM_2009_12_4_a1/
[1] Mikhailichenko G. G., “Dvumernye geometrii”, Dokl. AN SSSR, 260:4 (1981), 803–805 | MR
[2] Gelmgolts G., “O faktakh, lezhaschikh v osnovanii geometrii”, Ob osnovaniyakh geometrii, Gostekhizdat, M., 1956, 366–388
[3] Fikhtengolts G. M., Osnovy matematicheskogo analiza, T. 2, Lan, SPb., 1999, 201–211
[4] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1973, 11–59 | MR