Construction of Direct and Iterative Decomposition Methods
Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 99-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to solve the boundary value problems by the method of decomposing the computation region $G$ into subregions without overlapping and with the Dirichlet–Dirichlet type conditions, the Poincaré–Steklov operator equation on the junction boundary $\gamma$ of the subregions, which involves the difference of the normal derivatives of the solutions on the opposite sides of $\gamma$, is approximated by using the discrete Green's functions. Basing on this, we construct some direct and iterative decomposition methods which are parallel in nature. Sample computations show the precision and convergence of the proposed algorithms.
Keywords: boundary value problem, method for decomposing a region, Poincaré–Steklov equation, quasistructured mesh, discrete Green's function.
@article{SJIM_2009_12_3_a9,
     author = {V. M. Sveshnikov},
     title = {Construction of {Direct} and {Iterative} {Decomposition} {Methods}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {99--109},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a9/}
}
TY  - JOUR
AU  - V. M. Sveshnikov
TI  - Construction of Direct and Iterative Decomposition Methods
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2009
SP  - 99
EP  - 109
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a9/
LA  - ru
ID  - SJIM_2009_12_3_a9
ER  - 
%0 Journal Article
%A V. M. Sveshnikov
%T Construction of Direct and Iterative Decomposition Methods
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2009
%P 99-109
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a9/
%G ru
%F SJIM_2009_12_3_a9
V. M. Sveshnikov. Construction of Direct and Iterative Decomposition Methods. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 99-109. http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a9/

[1] Vasilevskii Yu. V., Olshanskii M. A., Kratkii kurs po mnogosetochnym metodam i metodam dekompozitsii oblasti, Izd-vo MGU, M., 2007

[2] Sveshnikov V. M., “Pryamoi metod dekompozitsii bez nalozheniya podoblastei dlya resheniya kraevykh zadach na pryamougolnykh kvazistrukturirovannykh setkakh”, Vychisl. tekhnologii, 13:2 (2008), 106–118

[3] Sveshnikov V. M., “Otsenki effektivnosti pryamogo metoda dekompozitsii”, Vychisl. tekhnologii, 13:4 (2008), 104–113

[4] Sveshnikov V. M., “O reshenii kraevykh zadach metodom dekompozitsii raschetnoi oblasti bez peresecheniya podoblastei”, Avtometriya, 43:2 (2007), 124–130

[5] Matsokin A. M., Avtomatizatsiya triangulyatsii oblastei s gladkoi granitsei pri reshenii uravnenii ellipticheskogo tipa, Preprint No 15, VTs SO AN SSSR, Novosibirsk, 1975

[6] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, izd. IVMiMG SO RAN, Novosibirsk, 2001

[7] Saad J., Schultz M. H., “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 7 (1986), 856–869 | DOI | MR | Zbl