Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2009_12_3_a4, author = {G. I. Zabinyako}, title = {Re-Construction of {Inverse} {Matrices}}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {41--51}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a4/} }
G. I. Zabinyako. Re-Construction of Inverse Matrices. Sibirskij žurnal industrialʹnoj matematiki, Tome 12 (2009) no. 3, pp. 41-51. http://geodesic.mathdoc.fr/item/SJIM_2009_12_3_a4/
[1] Murtaf B., Sovremennoe lineinoe programmirovanie. Teoriya i praktika, Mir, M., 1984 | MR
[2] Markowitz H. M., “The elimination form of the inverse and its applications to linear programming”, Management Sci., 3 (1957), 255–269 | DOI | MR | Zbl
[3] Pissanetski S., Tekhnologiya razrezhennykh matrits, Mir, M., 1988 | MR
[4] Esterbyu O., Zlatev Z., Pryamye metody dlya razrezhennykh matrits, Mir, M., 1987 | MR
[5] Li X., Direct solvers for sparse matrices, http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
[6] Hellerman E., Rarick D. C., “Reinversion with the preassigned pivot procedure”, Math. Prog., 1 (1971), 195–216 | DOI | MR | Zbl
[7] Hellerman E., Rarick D. C., “The partitioned preassigned pivot procedure ($P^4$)”, Sparse Matrices and Their Applications, Plenum Press, New York, 1972, 68–76 | MR
[8] Erisman A. M., Grimes R. G., Lewis J. G., Poole W. G. (Jr.), “A structurally stable modification of Hellerman–Rarick's $P^4$ algorithm for reordering unsymmetric sparse matrices”, SIAM J. Numer. Anal., 22:2 (1985), 369–385 | DOI | MR | Zbl
[9] Erisman A. M., Grimes R. G., Lewis J. G., PooleW. G., Simon H. D., “Evalution of reorderings unsymmetric sparse matrices”, SIAM J. Sci. Stat. Comput., 8:4 (1987), 601–624 | MR
[10] Olschowka M., Neumaier A., “A new pivoting strategy for Gaussian elimination”, Linear Algebra Appl., 240:1–3 (1996), 131–151 | DOI | MR
[11] Duff I. S., Koster J., “The design and use of algorithms for permuting large entries to the diagonal of sparse matrices”, SIAM J. Matrix Anal. Appl., 20:4 (1999), 889–901 | DOI | MR | Zbl
[12] Li X. C., Demmel W., “A scalable sparse direck solver using static pivoting”, Proc. 9 SIAM Conf. on Parallel Processing for Scientific Computing, San Antonio, 1999, 10 | MR
[13] Schenk O., Gartner K., “Solving unsymmetric sparse systems of linear equation with PARDISO”, Future Generation Computer Systems, 20 (2004), 475–487 | DOI
[14] Carpaneto G., Toth P., “Solution of the assignment problem (Algorithm 548)”, ACM Trans. Math. Software, 6:1 (1980), 104–111 | DOI
[15] Burkard R. E., Derigs U., Assignment and Matching Problems: SolutionMethods with FORTRAN-Programs, Lecture Notes in Econ. and Math. Systems, 184, 1980 | MR | Zbl
[16] Karypis G., Kumar V., METIS. A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices (Version 4.0), http:// www.cs.umn.edu/~karypis
[17] Karypis G., Kumar V., “A fast and high quality multivel scheme for partitioning irregular graphs”, SIAM J. Sci. Computing, 20:1 (1998), 359–392 | DOI | MR
[18] Brayton R. K., Gustavson F. G., Willoghby R. A., “Some results on sparse matrices”, Math. Comput., 24:112 (1970), 937–954 | DOI | MR
[19] Davis T. A., University of Florida sparse matrix collection, http://www.cise.ufl.edu/~davis/sparse
[20] Matrix Market, http://math.nist.gov/MatrixMarket
[21] Forsait Dzh., Malkolm M., Mouler K., Mashinnye metody matematicheskikh vychislenii, Mir, M., 1980 | MR