Методы бисопряженных направлений в~подпространствах Крылова
Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 4, pp. 47-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2008_11_4_a5,
     author = {V. P. Il'in},
     title = {{\CYRM}{\cyre}{\cyrt}{\cyro}{\cyrd}{\cyrery} {\cyrb}{\cyri}{\cyrs}{\cyro}{\cyrp}{\cyrr}{\cyrya}{\cyrzh}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrn}{\cyra}{\cyrp}{\cyrr}{\cyra}{\cyrv}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {\cyrv}~{\cyrp}{\cyro}{\cyrd}{\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyrr}{\cyra}{\cyrn}{\cyrs}{\cyrt}{\cyrv}{\cyra}{\cyrh} {{\CYRK}{\cyrr}{\cyrery}{\cyrl}{\cyro}{\cyrv}{\cyra}}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {47--60},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a5/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - Методы бисопряженных направлений в~подпространствах Крылова
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2008
SP  - 47
EP  - 60
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a5/
LA  - ru
ID  - SJIM_2008_11_4_a5
ER  - 
%0 Journal Article
%A V. P. Il'in
%T Методы бисопряженных направлений в~подпространствах Крылова
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2008
%P 47-60
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a5/
%G ru
%F SJIM_2008_11_4_a5
V. P. Il'in. Методы бисопряженных направлений в~подпространствах Крылова. Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 4, pp. 47-60. http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a5/

[1] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR

[2] Axelsson O., Iterative Solution Methods, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[3] Golub G. H., Van Loan C., Matrix Computations, John Hopkins Univ. Press, Baltimore, 1996 | MR | Zbl

[4] Saad Y., Iterative Methods for Sparse Linear Systems, PWS Publ., New York, 1996 | Zbl

[5] Ilin V. P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Nauka, M., 1995 | MR

[6] Ilin V. P., Metody i tekhnologii konechnykh elementov, Izd. IVMiMG SO RAN, Novosibirsk, 2007

[7] Ilin V. P., “Ob iteratsionnom metode Kachmazha i ego obobscheniyakh”, Sib. zhurn. industr. matematiki, 9:3 (2006), 39–49 | MR

[8] Ilin V. P., “O metodakh sopryazhennykh i polusopryazhennykh napravlenii s predobuslovlivayuschimi proektorami”, Dokl. RAN, 419:3 (2008), 303–306

[9] Saad J., Schultz M., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Statist. Comput., 7 (1986), 856–869 | DOI | MR | Zbl

[10] Stewart G. W., “Conjugate directionmethods for solving systems of linear equations”, Numer. Math., 21 (1973), 285–297 | DOI | MR | Zbl

[11] Juan J. Y., Golub G. H., Plemmons R. J., Cecilio W. A. G., Semi-conjugate directionmethods for real positive definite systems, Tech. Rep. SCCM–02–02, Stanford Univ., 2003

[12] Ilin V. P., Itskovich E. A., “O metodakh polusopryazhennykh napravlenii s dinamicheskim predobuslovlivaniem”, Sib. zhurn. vychisl. matematiki, 10:4 (2007), 41–54 | MR

[13] Lanczos C., “Solution of systems of linear equations by minimized iterations”, J. Res. Nat. Bur. Standards, 49 (1952), 33–53 | MR

[14] Fletcher R., “Conjugate gradientmethods for indefinite systems”, Proc. of the Dundee Biennal Conf. on Numerical Analysis, Springer Verl., New York, 1975, 73–89 | MR

[15] Sonneveld P., “CGS, a fast Lanczos-type solver for non-symmetric linear systems”, SIAM J. Sci. Statist. Comput., 10:1 (1989), 36–52 | DOI | MR | Zbl

[16] Van der Vorst H. A., “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems”, SIAM J. Sci. Statist. Comput., 12 (1992), 631–644 | MR

[17] Graves-Morris P. R., “The breakdowns of BiCGStab”, Numer. Algorithms, 29 (2002), 97–105 | DOI | MR | Zbl

[18] Andreeva M. Yu., Il'in V. P., Itskovich E. A., “Two solvers for nonsymmetric SLAE”, Bull. Novosibirsk Comput. Center. Ser. Num. Anal., 2004, no. 12, 1–16 | Zbl