Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2008_11_4_a5, author = {V. P. Il'in}, title = {{\CYRM}{\cyre}{\cyrt}{\cyro}{\cyrd}{\cyrery} {\cyrb}{\cyri}{\cyrs}{\cyro}{\cyrp}{\cyrr}{\cyrya}{\cyrzh}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyrn}{\cyra}{\cyrp}{\cyrr}{\cyra}{\cyrv}{\cyrl}{\cyre}{\cyrn}{\cyri}{\cyrishrt} {\cyrv}~{\cyrp}{\cyro}{\cyrd}{\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyrr}{\cyra}{\cyrn}{\cyrs}{\cyrt}{\cyrv}{\cyra}{\cyrh} {{\CYRK}{\cyrr}{\cyrery}{\cyrl}{\cyro}{\cyrv}{\cyra}}}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {47--60}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a5/} }
V. P. Il'in. Методы бисопряженных направлений в~подпространствах Крылова. Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 4, pp. 47-60. http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a5/
[1] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960 | MR
[2] Axelsson O., Iterative Solution Methods, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[3] Golub G. H., Van Loan C., Matrix Computations, John Hopkins Univ. Press, Baltimore, 1996 | MR | Zbl
[4] Saad Y., Iterative Methods for Sparse Linear Systems, PWS Publ., New York, 1996 | Zbl
[5] Ilin V. P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Nauka, M., 1995 | MR
[6] Ilin V. P., Metody i tekhnologii konechnykh elementov, Izd. IVMiMG SO RAN, Novosibirsk, 2007
[7] Ilin V. P., “Ob iteratsionnom metode Kachmazha i ego obobscheniyakh”, Sib. zhurn. industr. matematiki, 9:3 (2006), 39–49 | MR
[8] Ilin V. P., “O metodakh sopryazhennykh i polusopryazhennykh napravlenii s predobuslovlivayuschimi proektorami”, Dokl. RAN, 419:3 (2008), 303–306
[9] Saad J., Schultz M., “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Statist. Comput., 7 (1986), 856–869 | DOI | MR | Zbl
[10] Stewart G. W., “Conjugate directionmethods for solving systems of linear equations”, Numer. Math., 21 (1973), 285–297 | DOI | MR | Zbl
[11] Juan J. Y., Golub G. H., Plemmons R. J., Cecilio W. A. G., Semi-conjugate directionmethods for real positive definite systems, Tech. Rep. SCCM–02–02, Stanford Univ., 2003
[12] Ilin V. P., Itskovich E. A., “O metodakh polusopryazhennykh napravlenii s dinamicheskim predobuslovlivaniem”, Sib. zhurn. vychisl. matematiki, 10:4 (2007), 41–54 | MR
[13] Lanczos C., “Solution of systems of linear equations by minimized iterations”, J. Res. Nat. Bur. Standards, 49 (1952), 33–53 | MR
[14] Fletcher R., “Conjugate gradientmethods for indefinite systems”, Proc. of the Dundee Biennal Conf. on Numerical Analysis, Springer Verl., New York, 1975, 73–89 | MR
[15] Sonneveld P., “CGS, a fast Lanczos-type solver for non-symmetric linear systems”, SIAM J. Sci. Statist. Comput., 10:1 (1989), 36–52 | DOI | MR | Zbl
[16] Van der Vorst H. A., “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems”, SIAM J. Sci. Statist. Comput., 12 (1992), 631–644 | MR
[17] Graves-Morris P. R., “The breakdowns of BiCGStab”, Numer. Algorithms, 29 (2002), 97–105 | DOI | MR | Zbl
[18] Andreeva M. Yu., Il'in V. P., Itskovich E. A., “Two solvers for nonsymmetric SLAE”, Bull. Novosibirsk Comput. Center. Ser. Num. Anal., 2004, no. 12, 1–16 | Zbl