Искусственные краевые условия для эллиптических систем на многогранных усекающих поверхностях
Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 4, pp. 105-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2008_11_4_a10,
     author = {S. A. Nazarov and M. Specovius-Neugebauer},
     title = {{\CYRI}{\cyrs}{\cyrk}{\cyru}{\cyrs}{\cyrs}{\cyrt}{\cyrv}{\cyre}{\cyrn}{\cyrn}{\cyrery}{\cyre} {\cyrk}{\cyrr}{\cyra}{\cyre}{\cyrv}{\cyrery}{\cyre} {\cyru}{\cyrs}{\cyrl}{\cyro}{\cyrv}{\cyri}{\cyrya} {\cyrd}{\cyrl}{\cyrya} {\cyrerev}{\cyrl}{\cyrl}{\cyri}{\cyrp}{\cyrt}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrh} {\cyrs}{\cyri}{\cyrs}{\cyrt}{\cyre}{\cyrm} {\cyrn}{\cyra} {\cyrm}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyrg}{\cyrr}{\cyra}{\cyrn}{\cyrn}{\cyrery}{\cyrh} {\cyru}{\cyrs}{\cyre}{\cyrk}{\cyra}{\cyryu}{\cyrshch}{\cyri}{\cyrh} {\cyrp}{\cyro}{\cyrv}{\cyre}{\cyrr}{\cyrh}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyrya}{\cyrh}},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {105--124},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a10/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - M. Specovius-Neugebauer
TI  - Искусственные краевые условия для эллиптических систем на многогранных усекающих поверхностях
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2008
SP  - 105
EP  - 124
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a10/
LA  - ru
ID  - SJIM_2008_11_4_a10
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A M. Specovius-Neugebauer
%T Искусственные краевые условия для эллиптических систем на многогранных усекающих поверхностях
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2008
%P 105-124
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a10/
%G ru
%F SJIM_2008_11_4_a10
S. A. Nazarov; M. Specovius-Neugebauer. Искусственные краевые условия для эллиптических систем на многогранных усекающих поверхностях. Sibirskij žurnal industrialʹnoj matematiki, Tome 11 (2008) no. 4, pp. 105-124. http://geodesic.mathdoc.fr/item/SJIM_2008_11_4_a10/

[1] Nečas J., Les méthodes in théorie des équations elliptiques, Masson-Acad., Paris–Prague, 1967 | Zbl

[2] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy mat. analiza, 16, Izd-vo SPbGU, SPb., 1997, 167–192

[3] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | MR | Zbl

[4] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[5] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[6] Tsynkov S. V., “Numerical solution of problems on unbounded domains”, Appl. Numer. Math., 27 (1998), 465–532 | DOI | MR | Zbl

[7] Nazarov S. A., Specovius-Neugebauer M., “Approximation of exterior problems. Optimal conditions for the Laplacian”, Analysis, 16:4 (1996), 305–324 | MR | Zbl

[8] Nazarov S. A., Shpekovius-Noigebauer M., “Approksimatsiya neogranichennykh oblastei ogranichennymi. Kraevye zadachi dlya operatora Lame”, Algebra i analiz, 8:5 (1996), 229–268 | MR

[9] Nazarov S. A., Shpekovius-Noigebauer M., “O pogreshnostyakh pri approksimatsii neogranichennykh tel ogranichennymi”, Prikl. matematika i mekhanika, 62:4 (1998), 650–663 | MR

[10] Nazarov S. A., Specovius-Neugebauer M., “Artificial boundary conditions for the exterior spatial Navier–Stokes problem”, C. R. Acad. Sci. Ser. 2, 328:12 (2000), 863–867 | Zbl

[11] Nazarov S. A., Specovius-Neugebauer M., “Nonlinear artificial boundary conditions with pointwise error estimates for the exterior three dimensional Navier–Stokes problem”, Math. Nachr., 252:5 (2003), 86–105 | DOI | MR | Zbl

[12] Nazarov S. A., Shpekovius-Noigebauer M., “Iskusstvennye kraevye usloviya dlya ellipticheskikh sistem v oblastyakh s konicheskimi vykhodami na beskonechnost”, Dokl. RAN, 377:3 (2001), 317–320 | MR | Zbl

[13] Nazarov S. A., Specovius-Neugebauer M., “Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type”, Math. Meth. Appl. Sci., 27 (2004), 1507–1544 | DOI | MR | Zbl

[14] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1963, 219–292

[15] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[16] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[17] Mazya V. G., Plamenevskii B. A., “Otsenki v $L_p$ i v klassakh Gëldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82

[18] Nazarov S. A., Plamenevskii B. A., “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno-gladkoi granitsei”, Tr. Leningrad. mat. o-va, 1, 1990, 174–211 | MR

[19] Lukyanov V. V., Nazarov A. I., “Reshenie zadachi Venttselya dlya uravneniya Laplasa i Gelmgoltsa s pomoschyu povtornykh potentsialov”, Zapiski nauch. seminarov POMI, 250, POMI, SPb., 1998, 203–218 | MR | Zbl

[20] Gomez D., Lobo M., Nazarov S. A., Perez E., “Asymptotics for the spectrum of the Wentzell problem with a small parameter and other related stiff problems”, J. Math. Pures Appl., 86 (2006), 303–317 | MR

[21] Nazarov S. A., “Tonkie uprugie pokrytiya i poverkhnostnaya entalpiya”, Mekhanika tverdogo tela, 2007, no. 5, 60–74 | MR

[22] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for soluitons of elliptic partial differential equations satisfying general boundary conditions. 2”, Comm. Pure Appl. Math., 17:1 (1964), 35–92 | DOI | MR | Zbl

[23] Lekhnitskii S. G., Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977 | MR

[24] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauch. kniga, Novosibirsk, 2001

[25] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[26] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[27] Kozlov V. A., Mazya V. G., “Spektralnye svoistva operatornykh puchkov, porozhdennykh ellipticheskimi kraevymi zadachami v konuse”, Funktsion. analiz i ego pril., 22:2 (1988), 38–46 | MR | Zbl

[28] Langer S., Nazarov S. A., Specovius-Neugebauer M., “Artificial boundary conditions on polyhedral truncation surfaces for three-dimensional elasticity systems”, C. R. Mecanique, 332 (2004), 591–596 | DOI

[29] Langer S., Nazarov S. A., Shpekovius-Noigebauer M., “Affinnye preobrazovaniya trekhmernykh anizotropnykh sred i yavnye formuly dlya fundamentalnykh matrits”, Prikl. mekhanika i tekhn. fizika, 47:2 (2006), 95–102 | MR | Zbl

[30] Zorin I. S., Movchan A. B., Nazarov S. A., “O primenenii tenzorov uprugoi emkosti, polyarizatsii i prisoedinennoi deformatsii”, Issledovaniya po uprugosti i plastichnosti, 16, Izd-vo LGU, L., 1990, 75–91 | MR

[31] Nazarov S. A., “Tenzor i mery povrezhdennosti. 1. Asimptoticheskii analiz anizotropnoi sredy s defektami”, Mekhanika tverdogo tela, 2000, no. 3, 113–124 | MR

[32] Movchan A. B., “Matritsy polyarizatsii i emkosti Vinera dlya operatora teorii uprugosti v dvusvyaznykh oblastyakh”, Mat. zametki, 47:2 (1990), 151–153 | MR | Zbl

[33] Movchan A. B., “Integral characteristics of elastic inclusions and cavities in the two-dimensional theory of elesticity”, Europ. J. Appl. Math., 3 (1992), 21–30 | MR | Zbl

[34] Movchan A. B., Movchan N. V., Mathematical Modelling of Solids with Nonregular Boundaries, CRC Press, Boca Raton, 1995 | MR

[35] Argatov I. I., “Integralnye kharakteristiki zhestkikh vklyuchenii i polostei v ploskoi teorii uprugosti”, Prikl. matematika i mekhanika, 62:2 (1998), 283–289 | MR | Zbl