Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2007_10_4_a10, author = {A. V. Rukavishnikov and V. A. Rukavishnikov}, title = {On the nonconformal finite element method for the {Stokes} problem with a discontinuous coefficient}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {104--117}, publisher = {mathdoc}, volume = {10}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a10/} }
TY - JOUR AU - A. V. Rukavishnikov AU - V. A. Rukavishnikov TI - On the nonconformal finite element method for the Stokes problem with a discontinuous coefficient JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2007 SP - 104 EP - 117 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a10/ LA - ru ID - SJIM_2007_10_4_a10 ER -
%0 Journal Article %A A. V. Rukavishnikov %A V. A. Rukavishnikov %T On the nonconformal finite element method for the Stokes problem with a discontinuous coefficient %J Sibirskij žurnal industrialʹnoj matematiki %D 2007 %P 104-117 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a10/ %G ru %F SJIM_2007_10_4_a10
A. V. Rukavishnikov; V. A. Rukavishnikov. On the nonconformal finite element method for the Stokes problem with a discontinuous coefficient. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 4, pp. 104-117. http://geodesic.mathdoc.fr/item/SJIM_2007_10_4_a10/
[1] Crouzeix M., Raviart P. A., “Comforming and non-conforming finite element methods for solving the stationary Stokes equations”, RAIRO Anal. Numer., 7 (1973), 33–76 | MR
[2] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[3] Rukavishnikov A. V., “Chislennyi metod resheniya zadachi Stoksa s razryvnym koeffitsientom”, Vychisl. metody i programmirovanie, 6:1 (2005), 21–30
[4] Bernardi C., Maday Y., Patera A., “A new nonconforming approach to domain decomposition: the mortar element method”, Nonlinear Partial Differential Equations and their Applications, Pitman, Paris, 1989, 13–51 | MR
[5] Braess D., Dahmen W., Wieners C., “A multigrid algorithm for the mortar finite element methods”, SIAM J. Numer. Anal., 37:1 (1999), 48–69 | DOI | MR | Zbl
[6] Wohlmuth B., “Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers”, SIAM J. Numer. Anal., 36:5 (1999), 1636–1658 | DOI | MR | Zbl
[7] Ben Belgacem F., “The mixed mortar finite element method for the incompressible Stokes problem: convergence analysis”, SIAM J. Numer. Anal., 37:4 (2000), 1085–1100 | DOI | MR | Zbl
[8] Ben Belgacem F., “A stabilized domain decomposition method with nonmatching grids for the Stokes problem in three dimensions”, SIAM J. Numer. Anal., 42:2 (2004), 667–685 | DOI | MR | Zbl
[9] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR
[10] Rukavishnikov A. V., O differentsialnykh svoistvakh resheniya zadachi Stoksa s razryvnym koeffitsientom, Preprint, No 9, Khabarovsk. otd-nie In-ta prikladnoi matematiki DVO RAN, Vladivostok, 2004
[11] Kuznetsov Yu. A., “Efficient iterative solvers for elliptic finite elements problems on nonmatching grids”, Russian J. Numer. Anal. Math. Modelling, 10:3 (1995), 187–211 | MR | Zbl
[12] Braess D., Finite Elements: Theory, Fast solvers, and Applications in Solid Mechanics, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[13] Agouzal A., Thomas J.-P., “Une methode d'element finis hybrides en decomposition de domaines”, RAIRO Model. Math. Anal. Numer., 29 (1995), 749–764 | MR | Zbl
[14] Lions J.-L., Magenes E., Non-Homogeneous Boundary Value Problems and applications, Part I, Springer-Verlag, New York, 1972
[15] Boland J. M., Nicolaides R. A., “Stability of finite elements under divergence constraints”, SIAM J. Numer. Anal., 20:4 (1983), 722–731 | DOI | MR | Zbl