Algebraic approach to the design of distributed computing systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 2, pp. 70-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2007_10_2_a7,
     author = {S. P. Kovalyov},
     title = {Algebraic approach to the design of distributed computing systems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {70--84},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2007_10_2_a7/}
}
TY  - JOUR
AU  - S. P. Kovalyov
TI  - Algebraic approach to the design of distributed computing systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2007
SP  - 70
EP  - 84
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2007_10_2_a7/
LA  - ru
ID  - SJIM_2007_10_2_a7
ER  - 
%0 Journal Article
%A S. P. Kovalyov
%T Algebraic approach to the design of distributed computing systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2007
%P 70-84
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2007_10_2_a7/
%G ru
%F SJIM_2007_10_2_a7
S. P. Kovalyov. Algebraic approach to the design of distributed computing systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 10 (2007) no. 2, pp. 70-84. http://geodesic.mathdoc.fr/item/SJIM_2007_10_2_a7/

[1] Ehrig H., Mahr B., Fundamentals of Algebraic Specification, V. 1, Springer-Verl., Berlin, 1985 | MR

[2] Ehrig H., Mahr B., Fundamentals of Algebraic Specification, V. 2, Springer-Verl., Berlin, 1990 | MR | Zbl

[3] Grid Computing: Making the Global Infrastructure a Reality, Wiley Sons, New York, 2003

[4] Gurevich Y., “Evolving Algebras 1993: Lipari Guide”, Specification and Validation Methods, Univ. Press, Oxford, 1995, 9–36 | MR

[5] Németh Z., Sunderam V., “Characterizing Grids: attributes, definitions and formalisms”, J. Grid Computing, 1 (2003), 9–23 | DOI

[6] Kovalev S. P., “Analiticheskie modeli mashinnoi arifmetiki”, Sib. zhurn. industr. matematiki, 6:3 (2003), 88–102 | MR | Zbl

[7] Diskretnaya matematika i matematicheskie voprosy kibernetiki, T. I, Nauka, M., 1974

[8] Akho A. V., Khopkroft Dzh., Ulman Dzh., Postroenie i analiz vychislitelnykh algoritmov, Mir, M., 1979 | MR | Zbl

[9] Barnett M., Schulte W., “Runtime verification of .NET contracts”, J. Systems and Software, 2003, no. 65(3), 199–208

[10] Bergman C., Berman J., “Morita equivalence of almost-primal clones”, J. Pure Appl. Algebra, 108 (1996), 175–201 | DOI | MR | Zbl

[11] Rosenberg I. G., “Completeness properties of multiple-valued logic algebras”, Computer science and multiple-valued logic, North Holland, Amsterdam, 1977, 144–186

[12] Foster A. L., Pixley A. F., “Semi-categorical algebras I. Semi-primal algebras”, Math. Z, 83 (1964), 147–169 | DOI | MR | Zbl

[13] Karpenko A. S., Logiki Lukasevicha i prostye chisla, Nauka, M., 2000 | MR

[14] Kovalev S. P., “Logika Lukasevicha kak arkhitekturnaya model arifmetiki”, Sib. zhurn. industr. matematiki, 6:4 (2003), 32–50 | MR | Zbl

[15] Yablonskii S. V., Gavrilov G. P., Nabebin A. A., Predpolnye klassy v mnogoznachnykh logikakh, izd. MEI, M., 1997 | MR | Zbl

[16] Libkin L., Muchnik I., “The lattice of subsemilattices of a semilattice”, Algebra Universalis, 31 (1994), 252–255 | DOI | MR | Zbl

[17] Shevrin L. N., Ovsyannikov A. Ya., Polugruppy i ikh polugruppovye reshetki. Ch. 2. Reshetochnye izomorfizmy, Izd-vo Ural. un-ta, Sverdlovsk, 1991 | MR | Zbl

[18] Fiadeiro J. L., Lopes A., Wermelinger M., “A mathematical semantics for architectural connectors”, Lecture Notes in Computer Sci., 2793, 2003, 190–234