Conditions for existence of relaxation oscillations in singular systems of low dimension
Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 3, pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Relaxation oscillations are studied in a singularly perturbed system of ordinary differential equations with $m$ slow and $n$ fast variables for the case of $m=2$ and $n=1$. Necessary conditions and sufficient conditions for existence of relaxation oscillations are given.
@article{SJIM_2005_8_3_a9,
     author = {L. I. Kononenko},
     title = {Conditions for existence of relaxation oscillations in singular systems of low dimension},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {87--92},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a9/}
}
TY  - JOUR
AU  - L. I. Kononenko
TI  - Conditions for existence of relaxation oscillations in singular systems of low dimension
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2005
SP  - 87
EP  - 92
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a9/
LA  - ru
ID  - SJIM_2005_8_3_a9
ER  - 
%0 Journal Article
%A L. I. Kononenko
%T Conditions for existence of relaxation oscillations in singular systems of low dimension
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2005
%P 87-92
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a9/
%G ru
%F SJIM_2005_8_3_a9
L. I. Kononenko. Conditions for existence of relaxation oscillations in singular systems of low dimension. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 3, pp. 87-92. http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a9/

[1] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981 | MR | Zbl

[2] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[3] Zvonkin A. K., Shubin M. A., “Nestandartnyi analiz i singulyarnye vozmuscheniya”, Uspekhi mat. nauk, 39:2(236) (1984), 77–127 | MR | Zbl

[4] Kononenko L. I., “Relaksatsionnye kolebaniya v singulyarnykh sistemakh s medlennymi i bystrymi peremennymi”, Sib. zhurn. industr. matematiki, 7:3(19) (2004), 102–110 | MR | Zbl

[5] Goldshtein V. M., Sobolev V. A., Kachestvennyi analiz singulyarno vozmuschennykh sistem, izd. In-ta matematiki SO AN SSSR, Novosibirsk, 1988

[6] Sobolev V. A., Schepakina E. A., “Integralnye poverkhnosti so smenoi ustoichivosti”, Izv. RAEN. Ser. MMMiU, 1:3 (1997), 151–175 | MR | Zbl

[7] Kononenko L. I., “Infinitezimalnyi analiz singulyarnykh sistem s bystrymi i medlennymi peremennymi”, Sib. zhurn. industr. matematiki, 6:4(16) (2003), 51–59 | MR | Zbl

[8] Rotstein H. G., Kopell N., Zhabotinsky A. M., Epstein I. R., “A canard mechanism for localization in systems of globally coupled oscillators”, SIAM J. Appl. Math., 63:6 (2003), 1998–2019 | DOI | MR | Zbl

[9] Chen X., Yu P., Han M., Zhang W., “Canard solution of two-demensional singularly perturbed systems”, Chaos. Solitons Fractals, 23 (2005), 915–927 | DOI | MR | Zbl

[10] Kononenko L. I., “O gladkosti medlennykh poverkhnostei singulyarno vozmuschennykh sistem”, Sib. zhurn. industr. matematiki, 5:2(10) (2002), 109–125 | MR | Zbl