Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2005_8_3_a9, author = {L. I. Kononenko}, title = {Conditions for existence of relaxation oscillations in singular systems of low dimension}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {87--92}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a9/} }
TY - JOUR AU - L. I. Kononenko TI - Conditions for existence of relaxation oscillations in singular systems of low dimension JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2005 SP - 87 EP - 92 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a9/ LA - ru ID - SJIM_2005_8_3_a9 ER -
L. I. Kononenko. Conditions for existence of relaxation oscillations in singular systems of low dimension. Sibirskij žurnal industrialʹnoj matematiki, Tome 8 (2005) no. 3, pp. 87-92. http://geodesic.mathdoc.fr/item/SJIM_2005_8_3_a9/
[1] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Nauka, M., 1981 | MR | Zbl
[2] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR
[3] Zvonkin A. K., Shubin M. A., “Nestandartnyi analiz i singulyarnye vozmuscheniya”, Uspekhi mat. nauk, 39:2(236) (1984), 77–127 | MR | Zbl
[4] Kononenko L. I., “Relaksatsionnye kolebaniya v singulyarnykh sistemakh s medlennymi i bystrymi peremennymi”, Sib. zhurn. industr. matematiki, 7:3(19) (2004), 102–110 | MR | Zbl
[5] Goldshtein V. M., Sobolev V. A., Kachestvennyi analiz singulyarno vozmuschennykh sistem, izd. In-ta matematiki SO AN SSSR, Novosibirsk, 1988
[6] Sobolev V. A., Schepakina E. A., “Integralnye poverkhnosti so smenoi ustoichivosti”, Izv. RAEN. Ser. MMMiU, 1:3 (1997), 151–175 | MR | Zbl
[7] Kononenko L. I., “Infinitezimalnyi analiz singulyarnykh sistem s bystrymi i medlennymi peremennymi”, Sib. zhurn. industr. matematiki, 6:4(16) (2003), 51–59 | MR | Zbl
[8] Rotstein H. G., Kopell N., Zhabotinsky A. M., Epstein I. R., “A canard mechanism for localization in systems of globally coupled oscillators”, SIAM J. Appl. Math., 63:6 (2003), 1998–2019 | DOI | MR | Zbl
[9] Chen X., Yu P., Han M., Zhang W., “Canard solution of two-demensional singularly perturbed systems”, Chaos. Solitons Fractals, 23 (2005), 915–927 | DOI | MR | Zbl
[10] Kononenko L. I., “O gladkosti medlennykh poverkhnostei singulyarno vozmuschennykh sistem”, Sib. zhurn. industr. matematiki, 5:2(10) (2002), 109–125 | MR | Zbl