An integrodifferential model of a~population under the effects of pollutants
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 4, pp. 130-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2004_7_4_a11,
     author = {A. N. Pichugina},
     title = {An integrodifferential model of a~population under the effects of pollutants},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {130--140},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_4_a11/}
}
TY  - JOUR
AU  - A. N. Pichugina
TI  - An integrodifferential model of a~population under the effects of pollutants
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 130
EP  - 140
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_4_a11/
LA  - ru
ID  - SJIM_2004_7_4_a11
ER  - 
%0 Journal Article
%A A. N. Pichugina
%T An integrodifferential model of a~population under the effects of pollutants
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 130-140
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_4_a11/
%G ru
%F SJIM_2004_7_4_a11
A. N. Pichugina. An integrodifferential model of a~population under the effects of pollutants. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 4, pp. 130-140. http://geodesic.mathdoc.fr/item/SJIM_2004_7_4_a11/

[1] Poluektov R. A., Pykh Yu. A., Shvytov I. A., Dinamicheskie modeli ekologicheskikh sistem, Gidrometeoizdat, L., 1980

[2] Petrosyan L. A., Zakharov V. V., Matematicheskie modeli v ekologii, Izd-vo SPb un-ta, SPb., 1997 | MR | Zbl

[3] Penenko V. V., Tsvetova E. A., “Postroenie ortogonalnykh faktornykh prostranstv dlya determinirovanno-stokhasticheskikh modelei prirodnykh protsessov”, Tr. Mezhdunar. konf. po vychislitelnoi matematike MKVM-2004, izd. IVM i MG SO RAN, Novosibirsk, 2004, 296–302

[4] Krestin S. V., Rozenberg G. S., “Ob odnom mekhanizme “tsveteniya vody” v vodokhranilische ravninnogo tipa”, Biofizika, 41:3 (1996), 650–654

[5] Jinxiao P., Zhen J., Zhien M., “Thresholds ofs urvival for an $n$-dimensional Volterramutualistic system in a polluted environment”, J. Math. Anal. Appl., 252:2 (2000), 519–531 | DOI | MR | Zbl

[6] Pertsev N. V., “Issledovanie reshenii integralnoi modeli Lotki–Volterra”, Sib. zhurn. industr. matematiki, 2:2(4) (1999), 153–167 | MR | Zbl

[7] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[8] Pertsev N. V., Pichugina A. N., Pichugin B. Yu., “Povedenie reshenii dissipativnoi integralnoi modeli Lotki–Volterra”, Sib. zhurn. industr. matematiki, 6:2(14) (2003), 95–106 | MR | Zbl

[9] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1976 | MR

[10] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958

[11] Abrosov N. S., “Ekologicheskie faktory i mekhanizmy formirovaniya vidovogo raznoobraziya ekosistem i problema sovmestimosti vidov”, Ekologiya v Rossii na rubezhe XXI veka, Nauch. mir, M., 1999, 54–69