Approximation of the absorption coefficient for the radiative transfer equation on a~given energy interval
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 4, pp. 116-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the approximation of the absorption coefficient of the energy of a given substance for the radiative transfer equation by the absorption coefficient of a mixture of other substances on some energy interval. We indicate a connection between this problem and the problem of determining the internal structure of a nonhomogeneous medium from the results of its tomographic sounding. We give a geometric interpretation of the problem and its solution. For a given energy grid, we obtain necessary and sufficient conditions for the best approximation of the absorption coefficient.
@article{SJIM_2004_7_4_a10,
     author = {V. G. Nazarov},
     title = {Approximation of the absorption coefficient for the radiative transfer equation on a~given energy interval},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {116--129},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_4_a10/}
}
TY  - JOUR
AU  - V. G. Nazarov
TI  - Approximation of the absorption coefficient for the radiative transfer equation on a~given energy interval
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 116
EP  - 129
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_4_a10/
LA  - ru
ID  - SJIM_2004_7_4_a10
ER  - 
%0 Journal Article
%A V. G. Nazarov
%T Approximation of the absorption coefficient for the radiative transfer equation on a~given energy interval
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 116-129
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_4_a10/
%G ru
%F SJIM_2004_7_4_a10
V. G. Nazarov. Approximation of the absorption coefficient for the radiative transfer equation on a~given energy interval. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 4, pp. 116-129. http://geodesic.mathdoc.fr/item/SJIM_2004_7_4_a10/

[1] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[2] Anikonov D. S., Prokhorov I. V., “Znachenie koeffitsienta pogloscheniya izlucheniya v diagnostike rasseivayuschikh i pogloschayuschikh sred”, Dokl. RAN, 368:1 (1999), 24–26 | MR | Zbl

[3] Nazarov V. G., “Tomograficheskaya nerazlichimost granits kontakta nekotorykh materialov”, Dalnevostochnyi mat. sb., 1999, no. 8, 110–120

[4] Anikonov D. S., Nazarov V. G., Prokhorov I. V., Poorly Visible Media in $X$-ray Tomography, VSP, Utrecht, 2002

[5] Hubbell J. H., Seltzer S. M., Tables of $X$-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 Kev to 20 Mev for Elements $Z=1$ to 92 and 48 Additional Substances of Dosimetric Interest, NISTIR 5632, 1995

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[7] Zangvill U. E., Nelineinoe programmirovanie. Edinyi podkhod, Sov. radio, M., 1973

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl