Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2004_7_3_a3, author = {B. D. Annin and S. N. Korobeinikov}, title = {Generalized conjugate stress and strain tensors}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {21--43}, publisher = {mathdoc}, volume = {7}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a3/} }
B. D. Annin; S. N. Korobeinikov. Generalized conjugate stress and strain tensors. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 3, pp. 21-43. http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a3/
[1] Chernykh K. F., Litvinenkova Z. N., Teoriya bolshikh uprugikh deformatsii, Izd-vo LGU, L., 1988
[2] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR
[3] Pozdeev A. A., Trusov P. V., Nyashin Yu. I., Bolshie uprugoplasticheskie deformatsii, Nauka, M., 1986 | MR
[4] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, Izd-vo SO RAN, Novosibirsk, 2000
[5] Hill R., “On constitutive inequalities for simple materials, I”, J. Mech. Phys. Solids, 16:4 (1968), 229–242 ; Хилл Р., “Об определяющих неравенствах для простых материалов, I”, Механика, Сб. переводов, No 4(116), М., 1969, 94–109 | DOI | Zbl
[6] Hill R., “Aspects of invariance in solid mechanics”, Advances in Applied Mechanics, 18, Acad. Press, N. Y., 1978, 1–75 | MR
[7] Curnier A., Rakotomanana L., “Generalized strain and stress measures: critical survey and new results”, Engrg. Trans., 39:3–4 (1991), 461–538 | MR
[8] Holzapfel G. A., Nonlinear Solid Mechanics: a Continuum Approach for Egineering, John Wiley Sons, Chichester e. a., 2000 | MR
[9] Xiao H., “Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain”, Internat. J. Solids Structures, 32:22 (1995), 3327–3340 | DOI | MR | Zbl
[10] Novozhilov V. V., “O printsipakh obrabotki rezultatov staticheskikh ispytanii izotropnykh materialov”, Prikl. matematika i mekhanika, 15:6 (1951), 709–722 | Zbl
[11] Xiao H., Bruhns O. T., Meyers A., “Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures”, Arch. Mech. Stos., 50:6 (1998), 1015–1045 | MR | Zbl
[12] Guo Z.-H., “Time derivatives of tensor fields in non-linear continuum mechanics”, Arch. Mech. Stos., 15:1 (1963), 131–163 | MR | Zbl
[13] Meyers A., Schieße P., Bruhns O. T., “Some comments on objective rates of symmetric Eulerian tensors with application to Eulerian strain rates”, Acta Mech., 139:1–4 (2000), 91–103 | DOI | Zbl
[14] Korobeinikov S. N., “Ob'ektivnye proizvodnye Li tenzorov v mekhanike sploshnoi sredy”, Tr. 3 Mezhdunar. konf. “Simmetriya i differentsialnye uravneniya”, In-t vychisl. modelirovaniya SO RAN, Krasnoyarsk, 2002, 133–139
[15] Sedov L. I., Vvedenie v mekhaniku sploshnoi sredy, Fizmatgiz, M., 1962 | MR
[16] Korobeinikov S. N., “Sopryazhennye nesimmetrichnye tenzory napryazhenii i deformatsii”, Dinamika sploshnoi sredy, Sb. nauch. tr. In-ta gidrodinamiki SO RAN, no. 119, Novosibirsk, 2001, 68–72 | Zbl
[17] Korobeinikov S. N., “Conjugate nonsymmetric stress and strain tensors”, Proc. 1 Russian Korean Internat. Symp. on Applied Mechanics (RUSKO-AM-2001), Novosibirsk State Technical University, 2001, 69–73
[18] Annin B. D., Korobeinikov S. N., “Dopustimye formy uprugikh zakonov deformirovaniya v opredelyayuschikh sootnosheniyakh uprugo-plastichnosti”, Sib. zhurn. industr. matematiki, 1:1 (1998), 21–34 | MR
[19] Herrmann W., “Inelastic constitutive relations”, High-Pressure Shock Compression of Solids, Springer-Verl., Berlin, 1992, 115–185
[20] Lehmann Th., Guo Z.-H., Liang H., “The conjugacy between Cauchy stress and logarithm of the left stretch tensor”, European J. Mech. A Solids, 10:4 (1991), 395–404 | MR | Zbl
[21] Reihardt W. B., Dubey R. N., “Application of objective rates in mechanical modeling of solids”, Trans. ASME. J. Appl. Mech., 63:3 (1996), 692–698 | MR
[22] Xiao H., Bruhns O. T., Meyers A., “Logarithmic strain, logarithmic spin and logarithmic rate”, Acta Mech., 124 (1997), 89–105 | DOI | MR | Zbl
[23] Xiao H., Bruhns O. T., Meyers A., “Hypo-elasticity model based upon the logarithmic stress rate”, J. Elasticity, 47 (1997), 51–68 | DOI | MR | Zbl
[24] Korobeinikov S. N., “Strogo sopryazhennye tenzory napryazhenii i deformatsii”, Prikl. mekhanika i tekhn. fizika, 41:3 (2000), 149–154 | MR | Zbl
[25] Korobeinikov S. N., “Estestvennye tenzory napryazhenii”, Prikl. mekhanika i tekhn. fizika, 42:6 (2001), 152–158 | MR | Zbl
[26] Bell J. F., “Experiments on the kinematics of large plastic strain in ordered solids”, Internat. J. Solids Structures, 25:3 (1989), 267–278 | DOI
[27] Fung Y. C., Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, N. J., 1965
[28] Prager W., Einführung in die Kontinuumsmechanik, Birkhäuser Verl., Basel, 1961 ; Прагер В., Введение в механику сплошных сред, Изд-во иностр. лит., М., 1963 | MR | Zbl | MR
[29] Xiao H., Bruhns O. T., Meyers A., “Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress”, Mech. Res. Comm., 25:1 (1998), 59–67 | DOI | MR | Zbl
[30] Xiao H., Bruhns O. T., Meyers A., “Existence and uniqueness of the integrable-exactly hypoelastic equation $\mathring{\mathbf\tau}^*=\lambda(\operatorname{tr}\mathbf{D})\mathbf{I} +2\mu\mathbf{D}$ and its significance to finite inelasticity”, Acta Mech., 138 (1999), 31–50 | DOI | Zbl