Generalized conjugate stress and strain tensors
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 3, pp. 21-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a methodology for the systematic derivation of objective left and right strain tensors. We use a unified method for determining pairs of conjugate stress and strain tensors, which generalizes the known methods. We obtain new pairs of conjugate tensors that may be useful in the formulation of constitutive relations in nonlinear continuum mechanics. Since it is not desirable to use certain known pairs of conjugate stress and strain tensors in the equations of continuum mechanics, we select pairs of conjugate stress and strain tensors useful in applications. We emphasize the utility of right and left tensors of logarithmic strains in equations of the deformation of inelastic media. We give conjugate pairs of stress and logarithmic strain tensors. These pairs differ from the standard ones often used in investigations in nonlinear continuum mechanics. We note the advantage of the pairs we introduce over standard pairs.
@article{SJIM_2004_7_3_a3,
     author = {B. D. Annin and S. N. Korobeinikov},
     title = {Generalized conjugate stress and strain tensors},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {21--43},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a3/}
}
TY  - JOUR
AU  - B. D. Annin
AU  - S. N. Korobeinikov
TI  - Generalized conjugate stress and strain tensors
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 21
EP  - 43
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a3/
LA  - ru
ID  - SJIM_2004_7_3_a3
ER  - 
%0 Journal Article
%A B. D. Annin
%A S. N. Korobeinikov
%T Generalized conjugate stress and strain tensors
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 21-43
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a3/
%G ru
%F SJIM_2004_7_3_a3
B. D. Annin; S. N. Korobeinikov. Generalized conjugate stress and strain tensors. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 3, pp. 21-43. http://geodesic.mathdoc.fr/item/SJIM_2004_7_3_a3/

[1] Chernykh K. F., Litvinenkova Z. N., Teoriya bolshikh uprugikh deformatsii, Izd-vo LGU, L., 1988

[2] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980 | MR

[3] Pozdeev A. A., Trusov P. V., Nyashin Yu. I., Bolshie uprugoplasticheskie deformatsii, Nauka, M., 1986 | MR

[4] Korobeinikov S. N., Nelineinoe deformirovanie tverdykh tel, Izd-vo SO RAN, Novosibirsk, 2000

[5] Hill R., “On constitutive inequalities for simple materials, I”, J. Mech. Phys. Solids, 16:4 (1968), 229–242 ; Хилл Р., “Об определяющих неравенствах для простых материалов, I”, Механика, Сб. переводов, No 4(116), М., 1969, 94–109 | DOI | Zbl

[6] Hill R., “Aspects of invariance in solid mechanics”, Advances in Applied Mechanics, 18, Acad. Press, N. Y., 1978, 1–75 | MR

[7] Curnier A., Rakotomanana L., “Generalized strain and stress measures: critical survey and new results”, Engrg. Trans., 39:3–4 (1991), 461–538 | MR

[8] Holzapfel G. A., Nonlinear Solid Mechanics: a Continuum Approach for Egineering, John Wiley Sons, Chichester e. a., 2000 | MR

[9] Xiao H., “Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain”, Internat. J. Solids Structures, 32:22 (1995), 3327–3340 | DOI | MR | Zbl

[10] Novozhilov V. V., “O printsipakh obrabotki rezultatov staticheskikh ispytanii izotropnykh materialov”, Prikl. matematika i mekhanika, 15:6 (1951), 709–722 | Zbl

[11] Xiao H., Bruhns O. T., Meyers A., “Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures”, Arch. Mech. Stos., 50:6 (1998), 1015–1045 | MR | Zbl

[12] Guo Z.-H., “Time derivatives of tensor fields in non-linear continuum mechanics”, Arch. Mech. Stos., 15:1 (1963), 131–163 | MR | Zbl

[13] Meyers A., Schieße P., Bruhns O. T., “Some comments on objective rates of symmetric Eulerian tensors with application to Eulerian strain rates”, Acta Mech., 139:1–4 (2000), 91–103 | DOI | Zbl

[14] Korobeinikov S. N., “Ob'ektivnye proizvodnye Li tenzorov v mekhanike sploshnoi sredy”, Tr. 3 Mezhdunar. konf. “Simmetriya i differentsialnye uravneniya”, In-t vychisl. modelirovaniya SO RAN, Krasnoyarsk, 2002, 133–139

[15] Sedov L. I., Vvedenie v mekhaniku sploshnoi sredy, Fizmatgiz, M., 1962 | MR

[16] Korobeinikov S. N., “Sopryazhennye nesimmetrichnye tenzory napryazhenii i deformatsii”, Dinamika sploshnoi sredy, Sb. nauch. tr. In-ta gidrodinamiki SO RAN, no. 119, Novosibirsk, 2001, 68–72 | Zbl

[17] Korobeinikov S. N., “Conjugate nonsymmetric stress and strain tensors”, Proc. 1 Russian Korean Internat. Symp. on Applied Mechanics (RUSKO-AM-2001), Novosibirsk State Technical University, 2001, 69–73

[18] Annin B. D., Korobeinikov S. N., “Dopustimye formy uprugikh zakonov deformirovaniya v opredelyayuschikh sootnosheniyakh uprugo-plastichnosti”, Sib. zhurn. industr. matematiki, 1:1 (1998), 21–34 | MR

[19] Herrmann W., “Inelastic constitutive relations”, High-Pressure Shock Compression of Solids, Springer-Verl., Berlin, 1992, 115–185

[20] Lehmann Th., Guo Z.-H., Liang H., “The conjugacy between Cauchy stress and logarithm of the left stretch tensor”, European J. Mech. A Solids, 10:4 (1991), 395–404 | MR | Zbl

[21] Reihardt W. B., Dubey R. N., “Application of objective rates in mechanical modeling of solids”, Trans. ASME. J. Appl. Mech., 63:3 (1996), 692–698 | MR

[22] Xiao H., Bruhns O. T., Meyers A., “Logarithmic strain, logarithmic spin and logarithmic rate”, Acta Mech., 124 (1997), 89–105 | DOI | MR | Zbl

[23] Xiao H., Bruhns O. T., Meyers A., “Hypo-elasticity model based upon the logarithmic stress rate”, J. Elasticity, 47 (1997), 51–68 | DOI | MR | Zbl

[24] Korobeinikov S. N., “Strogo sopryazhennye tenzory napryazhenii i deformatsii”, Prikl. mekhanika i tekhn. fizika, 41:3 (2000), 149–154 | MR | Zbl

[25] Korobeinikov S. N., “Estestvennye tenzory napryazhenii”, Prikl. mekhanika i tekhn. fizika, 42:6 (2001), 152–158 | MR | Zbl

[26] Bell J. F., “Experiments on the kinematics of large plastic strain in ordered solids”, Internat. J. Solids Structures, 25:3 (1989), 267–278 | DOI

[27] Fung Y. C., Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, N. J., 1965

[28] Prager W., Einführung in die Kontinuumsmechanik, Birkhäuser Verl., Basel, 1961 ; Прагер В., Введение в механику сплошных сред, Изд-во иностр. лит., М., 1963 | MR | Zbl | MR

[29] Xiao H., Bruhns O. T., Meyers A., “Direct relationship between the Lagrangean logarithmic strain and the Lagrangean stretching and the Lagrangean Kirchhoff stress”, Mech. Res. Comm., 25:1 (1998), 59–67 | DOI | MR | Zbl

[30] Xiao H., Bruhns O. T., Meyers A., “Existence and uniqueness of the integrable-exactly hypoelastic equation $\mathring{\mathbf\tau}^*=\lambda(\operatorname{tr}\mathbf{D})\mathbf{I} +2\mu\mathbf{D}$ and its significance to finite inelasticity”, Acta Mech., 138 (1999), 31–50 | DOI | Zbl