Differential identities in the theory of inverse problems for kinetic equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 99-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary associative commutative ring $L$, we establish an identity of a certain type that relates arbitrary finite families of elements of the ring and its differential operators. When $L$ is an algebra of functions defined on a manifold $M$, and the differential operators are vector fields, one can derive from the identity established some known identities that can be used to prove uniqueness theorems in the theory of inverse problems for kinetic equations. In some cases, we are able to give necessary and sufficient conditions for the existence of the identity.
@article{SJIM_2004_7_2_a8,
     author = {M. V. Neshchadim},
     title = {Differential identities in the theory of inverse problems for kinetic equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {99--102},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a8/}
}
TY  - JOUR
AU  - M. V. Neshchadim
TI  - Differential identities in the theory of inverse problems for kinetic equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2004
SP  - 99
EP  - 102
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a8/
LA  - ru
ID  - SJIM_2004_7_2_a8
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%T Differential identities in the theory of inverse problems for kinetic equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2004
%P 99-102
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a8/
%G ru
%F SJIM_2004_7_2_a8
M. V. Neshchadim. Differential identities in the theory of inverse problems for kinetic equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 2, pp. 99-102. http://geodesic.mathdoc.fr/item/SJIM_2004_7_2_a8/

[1] Mukhometov R. G., “Zadacha vosstanovleniya dvumernoi rimanovoi metriki i integralnaya geometriya”, Dokl. AN SSSR, 232:1 (1977), 32–35 | MR | Zbl

[2] Anikonov Yu. E., Amirov A. Kh., “Teorema edinstvennosti resheniya obratnoi zadachi dlya kineticheskogo uravneniya”, Dokl. AN SSSR, 272:6 (1983), 1292–1293 | MR | Zbl

[3] Pestov L. N., “Zadacha integralnoi geometrii dlya tenzornykh polei na geodezicheskikh rimanovoi metriki”, Issledovaniya neklassicheskikh zadach matematicheskoi fiziki, Novosibirsk, 1985, 90–94 | Zbl

[4] Pestov L. N., Voprosy korrektnosti zadach luchevoi tomografii, Sib. nauch. izd-vo, Novosibirsk, 2003

[5] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR | Zbl

[6] Sharafutdinov V., Uhlmann G., “On deformation boundary rigidity and spectral rigidity of Riemannian surfaces with no focal points”, J. Differ. Geom., 56:1 (2000), 93–110 | MR | Zbl