Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2004_7_1_a8, author = {D. B. Rokhlin}, title = {A~criterion for the absence of arbitrage in a~discrete model of a~securities market under convex portfolio constraints}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {95--108}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2004_7_1_a8/} }
TY - JOUR AU - D. B. Rokhlin TI - A~criterion for the absence of arbitrage in a~discrete model of a~securities market under convex portfolio constraints JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2004 SP - 95 EP - 108 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2004_7_1_a8/ LA - ru ID - SJIM_2004_7_1_a8 ER -
%0 Journal Article %A D. B. Rokhlin %T A~criterion for the absence of arbitrage in a~discrete model of a~securities market under convex portfolio constraints %J Sibirskij žurnal industrialʹnoj matematiki %D 2004 %P 95-108 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2004_7_1_a8/ %G ru %F SJIM_2004_7_1_a8
D. B. Rokhlin. A~criterion for the absence of arbitrage in a~discrete model of a~securities market under convex portfolio constraints. Sibirskij žurnal industrialʹnoj matematiki, Tome 7 (2004) no. 1, pp. 95-108. http://geodesic.mathdoc.fr/item/SJIM_2004_7_1_a8/
[1] Harrison J. M., Kreps D. M., “Martingales and arbitrage in multiperiod securities markets”, J. Econom. Theory, 20 (1979), 381–408 | DOI | MR | Zbl
[2] Harrison J. M., Pliska S. R., “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Process. Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl
[3] Taqqu M. S., Willinger W., “The analysis of finite security markets using martingales”, Adv. in Appl. Probab., 19 (1987), 1–25 | DOI | MR | Zbl
[4] Melnikov A. V., Feoktistov K. M., “Voprosy bezarbitrazhnosti i polnoty diskretnykh rynkov i raschety platezhnykh obyazatelstv”, Obozrenie prikl. i promyshl. matematiki, 8:1 (2001), 28–40 | MR
[5] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, Fazis, M., 1998
[6] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973
[7] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl
[8] Schachermayer W., “A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time”, Insurance: Mathematics and Economics, 11 (1992), 249–257 | DOI | MR | Zbl
[9] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastic Rep., 29:2 (1990), 185–201 | MR | Zbl
[10] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stochastics, 2:3 (1998), 259–273 | DOI | MR | Zbl
[11] Kabanov Yu., Stricker C., “A teacher's note on no-arbitrage criteria”, Lecture Notes in Math., 1755, Springer, Berlin; Heidelberg, 2001, 149–152 | MR | Zbl
[12] Brannath W., No arbitrage andmartingalemeasures in option pricing, Doct. diss. Wien Univ., 1997
[13] Pham H., Touzi N., “The fundamental theorem of asset pricingwith cone constraints”, J. Math. Econom., 31 (1999), 265–279 | DOI | MR | Zbl
[14] Carassus L., Pham H., Touzi N., “No arbitrage in discrete time under portfolio constraints”, Math. Finance, 11:3 (2001), 315–329 | DOI | MR | Zbl
[15] Evstigneev I. V., Shürger K., Taksar M. I., On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria, Discussion paper 24/2002. Univ. Bonn, 2002
[16] Napp C., “The Dalang-Morton-Willinger theorem under cone constraints”, J. Math. Econom., 39 (2003), 111–126 | DOI | MR | Zbl
[17] Rokhlin D. B., “Kriterii otsutstviya asimptoticheskogo besplatnogo lencha na konechnomernom rynke pri vypuklykh ogranicheniyakh na portfel i vypuklykh operatsionnykh izderzhkakh”, Sib. zhurn. industr. matematiki, 5:1(9) (2002), 133–144 | MR | Zbl
[18] Rokhlin D. B., “Rasshirennaya versiya pervoi fundamentalnoi teoremy finansovoi matematiki pri konicheskikh ogranicheniyakh na portfel”, Obozrenie prikl. i promyshl. matematiki, 9:1 (2002), 131–132 | MR
[19] Uspenskii V. A., Chto takoe nestandartnyi analiz?, Nauka, M., 1987 | MR
[20] Albeverio S., Fenstad I., Kheeg-Kron R., Lindstrem T., Nestandartnye metody v stokhasticheskom analize i matematicheskoi fizike, Mir, M., 1990 | MR | Zbl
[21] Gordon I. E., Kusraev A. G., Kutateladze S. S., Infinitezimalnyi analiz, Izd-vo In-ta matematiki, Novosibirsk, 2001
[22] Kreps D. M., “Arbitrage and equilibrium in economies with infinitely many commodities”, J. Math. Econom., 8 (1981), 15–35 | DOI | MR | Zbl
[23] Clark S. A., “Arbitrage approximation theory”, J. Math. Econom., 33 (2000), 167–181 | DOI | MR | Zbl
[24] Jouini E., Kallal H., “Viability and equilibrium in securities markets with frictions”, Math. Finance, 9:3 (1999), 275–292 | DOI | MR | Zbl
[25] Klein I., “A fundamental theorem of asset pricing for large financial market”, Math. Finance, 10:4 (2000), 443–458 | DOI | MR | Zbl