A~stochastic model of an isolated population with seasonal breeding and self-limitation
Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 4, pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a stochastic model of an isolated population in which individuals can have offspring only at fixed times, have a random positive lifetime, and can perish due to self-limitation. Breeding of individuals is described by the general Cramp–Mode–Jagers branching process, and self-limitation by the pure death process. We obtain conditions for the almost sure retrogressive evolution of the population considered. We use the Monte Carlo method to justify the conditions indicated in the nonlinear case.
@article{SJIM_2003_6_4_a6,
     author = {B. Yu. Pichugin},
     title = {A~stochastic model of an isolated population with seasonal breeding and self-limitation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a6/}
}
TY  - JOUR
AU  - B. Yu. Pichugin
TI  - A~stochastic model of an isolated population with seasonal breeding and self-limitation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2003
SP  - 75
EP  - 81
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a6/
LA  - ru
ID  - SJIM_2003_6_4_a6
ER  - 
%0 Journal Article
%A B. Yu. Pichugin
%T A~stochastic model of an isolated population with seasonal breeding and self-limitation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2003
%P 75-81
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a6/
%G ru
%F SJIM_2003_6_4_a6
B. Yu. Pichugin. A~stochastic model of an isolated population with seasonal breeding and self-limitation. Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 4, pp. 75-81. http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a6/

[1] Kharris T. E., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966

[2] Barucha-Rid A. T., Elementy teorii markovskikh sluchainykh protsessov i ikh prilozheniya, Nauka, M., 1969

[3] Jagers P., Branching processes with biological applications, Wiley and Sons, London, 1975 | MR | Zbl

[4] Kostitzin V. A., La Biologie Mathematique, A. Colin, Paris, 1937 | Zbl

[5] Aagaard-Hansen H., Yeo G. F., “A stochastic discrete generation birth, continuous death population growth model and its approximate solution”, J. Math. Biol., 20 (1984), 69–90 | DOI | MR | Zbl

[6] Nedorezov L. V., Nazarov I. N., “Nepreryvno-diskretnye modeli dinamiki izolirovannoi populyatsii i dvukh konkuriruyuschikh vidov”, Matematicheskie struktury i modelirovanie, Vyp. 2, izd. Omsk. gos. un-ta, Omsk, 1998, 77–91 | MR

[7] Nagaev S. V., Nedorezov L. V., Vakhtel V. I., “Veroyatnostnaya nepreryvno-diskretnaya model dinamiki chislennosti izolirovannoi populyatsii”, Sib. zhurn. industr. matematiki, 2:2(4) (1999), 147–152 | MR | Zbl

[8] Rodionov A. M., “O nekotorykh diskretnykh modelyakh mezhvidovogo vzaimodeistviya”, Avtomatika i telemekhanika, 2000, no. 12, 122–129 | MR | Zbl

[9] Dobrynskii V. A., “Ob usloviyakh ustoichivogo suschestvovaniya dvukh populyatsii odnogo vida organizmov”, Differentsialnye uravneniya, 37:12 (2001), 1680–1685 | MR | Zbl

[10] Ermakov S. M., Mikhailov G. A., Kurs statisticheskogo modelirovaniya, Nauka, M., 1976 | MR

[11] Pichugin B. Yu., Pertsev N. V., “Statisticheskoe modelirovanie populyatsii vzaimodeistvuyuschikh chastits s proizvolnym raspredeleniem vremeni zhizni”, Matematicheskie struktury i modelirovanie, Vyp. 7, izd. Omsk. gos. un-ta, Omsk, 2001, 67–78 | MR

[12] Pertsev N. V., Pichugin B. J., “Stochastic modeling of the individual's community with their transformation and interaction”, Proc. Internat. Conf. on Computational Mathematics, Part I, ICM MG Publisher, Novosibirsk, 2002, 249–253 | MR

[13] Kozlov M. V., Prokhorov A. V., Vvedenie v matematicheskuyu statistiku, Izd-vo MGU, M., 1987 | MR | Zbl