On a~model of the predator-prey system with delay
Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 4, pp. 67-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the dynamics of the size of an isolated population with delay in the birth rate, and the corresponding predator-prey system. For the prey population, it is assumed that only those individuals who were alive at a certain prior time can reproduce; more precisely, only those who are still alive at the present moment can reproduce. We study the general properties of the models and their dynamic regimes. In particular, we show that the form of delay proposed does not lead to instability of nontrivial equilibrium states.
@article{SJIM_2003_6_4_a5,
     author = {L. V. Nedorezov and Yu. V. Utyupin},
     title = {On a~model of the predator-prey system with delay},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {67--74},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a5/}
}
TY  - JOUR
AU  - L. V. Nedorezov
AU  - Yu. V. Utyupin
TI  - On a~model of the predator-prey system with delay
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2003
SP  - 67
EP  - 74
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a5/
LA  - ru
ID  - SJIM_2003_6_4_a5
ER  - 
%0 Journal Article
%A L. V. Nedorezov
%A Yu. V. Utyupin
%T On a~model of the predator-prey system with delay
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2003
%P 67-74
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a5/
%G ru
%F SJIM_2003_6_4_a5
L. V. Nedorezov; Yu. V. Utyupin. On a~model of the predator-prey system with delay. Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 4, pp. 67-74. http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a5/

[1] Babskii V. G., Myshkis A. D., “Matematicheskie modeli v biologii, svyazannye s uchetom posledeistviya”, v kn.: Marri Dzh., Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, Mir, M., 1983, 383–394

[2] Kolesov Yu. S., “Nekotorye zadachi matematicheskoi ekologii”, Differentsialnye uravneniya i ikh primenenie, no. 29, Vilnyus, 1981, 27–35 | MR | Zbl

[3] Kolesov Yu. S., Shvitra D. I., “Issledovanie dvukhchastotnykh kolebanii v zadache “khischnik – zhertva””, Differentsialnye uravneniya i ikh primenenie, no. 24, Vilnyus, 1979, 49–66 | MR | Zbl

[4] Kolesov Yu. S., Shvitra D. I., Avtokolebaniya v sistemakh s zapazdyvaniem, Mokslas, Vilnyus, 1979 | MR | Zbl

[5] Marri Dzh., Nelineinye differentsialnye uravneniya v biologii. Lektsii o modelyakh, Mir, M., 1983

[6] Smit Dzh. M., Matematicheskie idei v biologii, Mir, M., 1970

[7] Smit Dzh. M., Modeli v ekologii, Mir, M., 1976

[8] Cushing J. M., “Time delays in single species growth models”, J. Math. Biol., 4:3 (1977), 257–264 | DOI | MR | Zbl

[9] Cushing J. M., “Bifurcation of periodic solutions due to delays in single species growthmodels”, J. Math. Biol., 6:2 (1978), 145–161 | DOI | MR | Zbl

[10] Hutchinson G. E., “Theory of competition between two social species”, Ecology, 28 (1947), 319–321 | DOI

[11] Hutchinson G. E., “Circular causal systems in ecology”, Ann. New York Acad. Sci., 50 (1948), 221–246 | DOI

[12] Nedorezov L. V., Vvedenie v ekologicheskoe modelirovanie, T. 1, izd. NGU, Novosibirsk, 1998

[13] A. S. Isaev, R. G. Khlebopros, L. V. Nedorezov i dr. (red.), Populyatsionnaya dinamika lesnykh nasekomykh, Nauka, M., 2001

[14] Pertsev N. V., “Ob asimptoticheskom povedenii reshenii odnoi sistemy lineinykh differentsialnykh uravnenii s posledeistviem”, Izv. vuzov. Matematika, 1996, no. 9, 48–52 | MR | Zbl

[15] Pertsev N. V., “Issledovanie reshenii odnoi sistemy integrodifferentsialnykh uravnenii, voznikayuschei v modelyakh dinamiki populyatsii”, Vest. Omsk. gos. un-ta, 1996, no. 1, 24–26

[16] Pertsev N. V., “Ob odnom obobschenii logisticheskoi modeli dinamiki populyatsii s ogranichennym vremenem zhizni osobei”, Vest. Omsk. gos. un-ta, 1997, no. 1, 14–16

[17] Pertsev N. V., “O resheniyakh modeli Lotki–Volterra, uchityvayuschei ogranichennost vremeni zhizni osobei konkuriruyuschikh populyatsii”, Differents. uravneniya, 35:9 (1999), 1187–1193 | MR | Zbl

[18] Verhulst P. F., “Notice sur la loi que la population suit dans son accroissement”, Corresp. Math. et Phys., 1838, no. 10, 113–121

[19] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[20] Abrosov N. S., Kovrov B. G., Analiz vidovoi struktury troficheskogo urovnya odnokletochnykh, Nauka, Novosibirsk, 1977

[21] Abrosov N. S., Kovrov B. G., Cherepanov O. A., Ekologicheskie mekhanizmy sosuschestvovaniya i vidovoi regulyatsii, Nauka, Novosibirsk, 1982

[22] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976 | MR

[23] Volterra V., Lecons sur la Theorie Mathematique de la Lutte pour la Vie, Gauthiers-Villars, Paris, 1931 | Zbl