Lukasiewicz's logic as an architecture model of arithmetic
Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 4, pp. 32-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a complete formal description of various architecture models of computer realizations of arithmetic in terms of the finite-valued Lukasiewicz logic and logics enriched by it. The weak incompleteness property of these logics enables one to study the structural characteristics of operations independent of the representation of numbers, such as the forms of admissible overflows. We describe some properties of the lattice of these logics and find bases suitable for applications. We consider logical structures that arise in the realization of arithmetic operations and the representation of overflow in positional number systems. We indicate paths for the development of hardware-based realizations of arithmetic. We present a new view of the nature of Lukasiewicz's logic.
@article{SJIM_2003_6_4_a2,
     author = {S. P. Kovalyov},
     title = {Lukasiewicz's logic as an architecture model of arithmetic},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {32--50},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a2/}
}
TY  - JOUR
AU  - S. P. Kovalyov
TI  - Lukasiewicz's logic as an architecture model of arithmetic
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2003
SP  - 32
EP  - 50
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a2/
LA  - ru
ID  - SJIM_2003_6_4_a2
ER  - 
%0 Journal Article
%A S. P. Kovalyov
%T Lukasiewicz's logic as an architecture model of arithmetic
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2003
%P 32-50
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a2/
%G ru
%F SJIM_2003_6_4_a2
S. P. Kovalyov. Lukasiewicz's logic as an architecture model of arithmetic. Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 4, pp. 32-50. http://geodesic.mathdoc.fr/item/SJIM_2003_6_4_a2/