Analytic models of machine arithmetic
Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 3, pp. 88-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new methods for constructing analytic models of information systems whose requirements are specified by formal theories. The methods are based on a special modification of a model-theoretic approach, called partial interpretation. We construct analytic models of computer implementations of arithmetic–partial interpretations of arithmetic theories with finite universes. We describe the main classes of partial interpretations of integer arithmetics, which are distinguished by the methods for processing overflows. We consider a partial interpretation of the arithmetic of rational numbers based on the IEEE Standard 754. We analyze computation models supported by various programming languages and propose paths for their development.
@article{SJIM_2003_6_3_a6,
     author = {S. P. Kovalyov},
     title = {Analytic models of machine arithmetic},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {88--102},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2003_6_3_a6/}
}
TY  - JOUR
AU  - S. P. Kovalyov
TI  - Analytic models of machine arithmetic
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2003
SP  - 88
EP  - 102
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2003_6_3_a6/
LA  - ru
ID  - SJIM_2003_6_3_a6
ER  - 
%0 Journal Article
%A S. P. Kovalyov
%T Analytic models of machine arithmetic
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2003
%P 88-102
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2003_6_3_a6/
%G ru
%F SJIM_2003_6_3_a6
S. P. Kovalyov. Analytic models of machine arithmetic. Sibirskij žurnal industrialʹnoj matematiki, Tome 6 (2003) no. 3, pp. 88-102. http://geodesic.mathdoc.fr/item/SJIM_2003_6_3_a6/

[1] Gashkov S. B., Chubarikov V. N., Arifmetika. Algoritmy. Slozhnost vychislenii, Vyssh. shkola, M., 2000

[2] Yakobson A., Buch G., Rambo Dzh., Unifitsirovannyi protsess razrabotki programmnogo obespecheniya, Piter, SPb., 2002

[3] Bull J. M., Smith L. A., Pottage L., Freeman R., “Benchmarking Java against C and Fortran for scientific applications”, Proc. ACM 2001 Java Grande Conf., ACM, Stanford, 2001, 97–105

[4] Keisler G., Chen Ch. Ch., Teoriya modelei, Mir, M., 1977 | MR

[5] Tarskii A., Vvedenie v logiku i metodologiyu deduktivnykh nauk, IP “TRIVIUM”, Birobidzhan, 2000

[6] Bauer F. L., Gooz G., Informatika. Vvodnyi kurs, 1, 2, Mir, M., 1990 | MR

[7] Yablonskii S. V., “Vvedenie v teoriyu funktsii $k$-znachnoi logiki”, Diskretnaya matematika i matematicheskie voprosy kibernetiki, T. 1, Nauka, M., 1974

[8] Kahan W., Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic, , Berkeley, 1996 http://www.cs.berkeley.edu/? wkahan/ieee754-status/IEEE754.pdf

[9] Pratt T., Zelkovits M., Yazyki programmirovaniya: razrabotka i realizatsiya, Piter, SPb., 2002

[10] TMS320C3x General-Purpose Applications User's Guide. Texas Instruments, , 1998 http://www-s.ti.com/sc/psheets/spru194/spru194.pdf

[11] Kleschev A. S., Artemeva I. L., “Neobogaschennye sistemy logicheskikh otnoshenii. Ch. 1”, NTI. Ser. 2, 7, 2000, 18–28

[12] Kleschev A. S., Artemeva I. L., “Neobogaschennye sistemy logicheskikh otnoshenii. Ch. 2”, NTI. Ser. 2, 8, 2000, 8–18

[13] Minskii M., Freimy dlya predstavleniya znanii, Energiya, M., 1979