Behavior of solutions of the nonlinear Sharpe--Lotka model
Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 3, pp. 146-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{SJIM_2002_5_3_a14,
     author = {A. N. Pichugina},
     title = {Behavior of solutions of the nonlinear {Sharpe--Lotka} model},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {146--154},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2002_5_3_a14/}
}
TY  - JOUR
AU  - A. N. Pichugina
TI  - Behavior of solutions of the nonlinear Sharpe--Lotka model
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2002
SP  - 146
EP  - 154
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2002_5_3_a14/
LA  - ru
ID  - SJIM_2002_5_3_a14
ER  - 
%0 Journal Article
%A A. N. Pichugina
%T Behavior of solutions of the nonlinear Sharpe--Lotka model
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2002
%P 146-154
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2002_5_3_a14/
%G ru
%F SJIM_2002_5_3_a14
A. N. Pichugina. Behavior of solutions of the nonlinear Sharpe--Lotka model. Sibirskij žurnal industrialʹnoj matematiki, Tome 5 (2002) no. 3, pp. 146-154. http://geodesic.mathdoc.fr/item/SJIM_2002_5_3_a14/

[1] R. A. Poluektov (red.), Dinamicheskaya teoriya biologicheskikh populyatsii, Nauka, M., 1974

[2] Khmelevskii Yu. I., Samovosproizvodyaschiesya sistemy. Matematicheskaya teoriya, Nauka, M., 1991 | MR

[3] Webb G. F., Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York; Basel, 1985 | MR | Zbl

[4] Cushing J. M., Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, Springer-Verl., New York, 1974 | MR

[5] Sharpe F. R., Lotka A. J., “A problem of age-distribution”, Philos. Mag., 21 (1911), 435–438

[6] Lotka A. J., “A contribution to the theory of self-renewing aggregates, with special reference to industrial replacement”, Ann. Math. Stat., 10 (1939), 1–25 | DOI | Zbl

[7] Moran P., Statisticheskie protsessy evolyutsionnoi teorii, Nauka, M., 1973

[8] Cook K., York J., “Some equations modelling growth processes and gonorhea epidemics”, Math. Biosci., 16 (1973), 75–101 | DOI | MR | Zbl

[9] Belair J., Lifespans in Population Models: Using Time Delay, Lecture Notes in Biomathematics, Springer-Verl., New York, 1991 | MR

[10] Gyori I., “Some mathematical aspects of modeling cell population dynamics”, Comput. Math. Appl., 20:4–6 (1990), 127–138 | DOI | MR

[11] Pertsev N. V., “Issledovanie reshenii odnoi sistemy integrodifferentsialnykh uravnenii, voznikayuschei v modelyakh dinamiki populyatsii”, Vest. Omsk. gos. un-ta, 1996, no. 1, 24–26

[12] Pertsev N. V., “Issledovanie reshenii integralnoi modeli Lotki–Volterra”, Sib. zhurn. industr. matematiki, 2:2(4) (1999), 153–167 | MR | Zbl

[13] Poluektov R. A., Pykh Yu. A., Shvytov I. A., Dinamicheskie modeli ekologicheskikh sistem, Gidrometeoizdat, L., 1980

[14] Zang V.-B., Sineriticheskaya ekonomika. Vremya i peremeny v nelineinoi ekonomicheskoi teorii, Mir, M., 1999