Locally Two-weight Property for Linear Codes and Its Application
Serdica Journal of Computing, Tome 17 (2024) no. 2, pp. 95-106.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

A q-ary linear code is an [n,k,d]q code, which is a linear code of length n, dimension k and minimum weight d over Fq, the field of order q. A fundamental problem in coding theory is to find nq(k,d), the minimum length n for which an [n,k,d]q code exists for given k,d and q. We introduce a new notion "e-locally 2-weight (mod q)" for linear codes over Fq and we give a necessary condition for the property. As an application, we prove the non-existence of some [n,4,d]9 codes with d ≡ −1 (mod 9), which determines n9(4,d) for some d.
Keywords: Linear Codes, Two-weight, Non-existence, Geometric Method
@article{SJC_2024_17_2_a1,
     author = {Kanda, Hitoshi and Kato, Atsuya and Maruta, Tatsuya},
     title = {Locally {Two-weight} {Property} for {Linear} {Codes} and {Its} {Application}},
     journal = {Serdica Journal of Computing},
     pages = {95--106},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2024_17_2_a1/}
}
TY  - JOUR
AU  - Kanda, Hitoshi
AU  - Kato, Atsuya
AU  - Maruta, Tatsuya
TI  - Locally Two-weight Property for Linear Codes and Its Application
JO  - Serdica Journal of Computing
PY  - 2024
SP  - 95
EP  - 106
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2024_17_2_a1/
LA  - en
ID  - SJC_2024_17_2_a1
ER  - 
%0 Journal Article
%A Kanda, Hitoshi
%A Kato, Atsuya
%A Maruta, Tatsuya
%T Locally Two-weight Property for Linear Codes and Its Application
%J Serdica Journal of Computing
%D 2024
%P 95-106
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2024_17_2_a1/
%G en
%F SJC_2024_17_2_a1
Kanda, Hitoshi; Kato, Atsuya; Maruta, Tatsuya. Locally Two-weight Property for Linear Codes and Its Application. Serdica Journal of Computing, Tome 17 (2024) no. 2, pp. 95-106. http://geodesic.mathdoc.fr/item/SJC_2024_17_2_a1/