Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
@article{SJC_2023_17_1_a0, author = {Nebioglu, Burak and Iliev, Alexander I.}, title = {Higher {Order} {Orthogonal} {Polynomials} as {Activation} {Functions} in {Artificial} {Neural} {Networks}}, journal = {Serdica Journal of Computing}, pages = {1--16}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SJC_2023_17_1_a0/} }
TY - JOUR AU - Nebioglu, Burak AU - Iliev, Alexander I. TI - Higher Order Orthogonal Polynomials as Activation Functions in Artificial Neural Networks JO - Serdica Journal of Computing PY - 2023 SP - 1 EP - 16 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJC_2023_17_1_a0/ LA - en ID - SJC_2023_17_1_a0 ER -
%0 Journal Article %A Nebioglu, Burak %A Iliev, Alexander I. %T Higher Order Orthogonal Polynomials as Activation Functions in Artificial Neural Networks %J Serdica Journal of Computing %D 2023 %P 1-16 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJC_2023_17_1_a0/ %G en %F SJC_2023_17_1_a0
Nebioglu, Burak; Iliev, Alexander I. Higher Order Orthogonal Polynomials as Activation Functions in Artificial Neural Networks. Serdica Journal of Computing, Tome 17 (2023) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/SJC_2023_17_1_a0/