On some Optimal (n,t,1,2) and (n,t,1,3) Super Imposed Codes
Serdica Journal of Computing, Tome 3 (2009) no. 1, pp. 15-22.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

One of the main problems in the theory of superimposed codes is to find the minimum length N for which an (N, T,w, r) superimposed code exists for given values of T , w and r. Let N(T,w, r) be the minimum length N for which an (N, T,w, r) superimposed code exists. The (N, T,w, r) superimposed code is called optimal when N = N(T,w, r). The values of N(T, 1, 2) are known for T ≤ 12 and the values of N(T, 1, 3) are known for T ≤ 20. In this work the values of N(T, 1, 2) for 13 ≤ T ≤ 20 and the value of N(21, 1, 3) are obtained. The optimal superimposed codes with parameters (9, 10, 1, 2), (10, 13, 1, 2), (11, 14, 1, 2), (11, 15, 1, 2), (11, 16, 1, 2) and (11, 17, 1, 2) are classified up to equivalence. The optimal (N, T, 1, 3) superimposed codes for T ≤ 20 are classified up to equivalence.
Keywords: Superimposed Codes, Classification
@article{SJC_2009_3_1_a1,
     author = {Manev, Mladen},
     title = {On some {Optimal} (n,t,1,2) and (n,t,1,3) {Super} {Imposed} {Codes}},
     journal = {Serdica Journal of Computing},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2009_3_1_a1/}
}
TY  - JOUR
AU  - Manev, Mladen
TI  - On some Optimal (n,t,1,2) and (n,t,1,3) Super Imposed Codes
JO  - Serdica Journal of Computing
PY  - 2009
SP  - 15
EP  - 22
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2009_3_1_a1/
LA  - en
ID  - SJC_2009_3_1_a1
ER  - 
%0 Journal Article
%A Manev, Mladen
%T On some Optimal (n,t,1,2) and (n,t,1,3) Super Imposed Codes
%J Serdica Journal of Computing
%D 2009
%P 15-22
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2009_3_1_a1/
%G en
%F SJC_2009_3_1_a1
Manev, Mladen. On some Optimal (n,t,1,2) and (n,t,1,3) Super Imposed Codes. Serdica Journal of Computing, Tome 3 (2009) no. 1, pp. 15-22. http://geodesic.mathdoc.fr/item/SJC_2009_3_1_a1/