On Multiple Deletion Codes
Serdica Journal of Computing, Tome 1 (2007) no. 1, pp. 13-26.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In 1965 Levenshtein introduced the deletion correcting codes and found an asymptotically optimal family of 1-deletion correcting codes. During the years there has been a little or no research on t-deletion correcting codes for larger values of t. In this paper, we consider the problem of finding the maximal cardinality L2(n;t) of a binary t-deletion correcting code of length n. We construct an infinite family of binary t-deletion correcting codes. By computer search, we construct t-deletion codes for t = 2;3;4;5 with lengths n ≤ 30. Some of these codes improve on earlier results by Hirschberg-Fereira and Swart-Fereira. Finally, we prove a recursive upper bound on L2(n;t) which is asymptotically worse than the best known bounds, but gives better estimates for small values of n.
Keywords: Insertion/Deletion Codes, Varshamov-Tennengolts Codes, Multiple Insertion/Deletion Codes
@article{SJC_2007_1_1_a2,
     author = {Landjev, Ivan and Haralambiev, Kristiyan},
     title = {On {Multiple} {Deletion} {Codes}},
     journal = {Serdica Journal of Computing},
     pages = {13--26},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SJC_2007_1_1_a2/}
}
TY  - JOUR
AU  - Landjev, Ivan
AU  - Haralambiev, Kristiyan
TI  - On Multiple Deletion Codes
JO  - Serdica Journal of Computing
PY  - 2007
SP  - 13
EP  - 26
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJC_2007_1_1_a2/
LA  - en
ID  - SJC_2007_1_1_a2
ER  - 
%0 Journal Article
%A Landjev, Ivan
%A Haralambiev, Kristiyan
%T On Multiple Deletion Codes
%J Serdica Journal of Computing
%D 2007
%P 13-26
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJC_2007_1_1_a2/
%G en
%F SJC_2007_1_1_a2
Landjev, Ivan; Haralambiev, Kristiyan. On Multiple Deletion Codes. Serdica Journal of Computing, Tome 1 (2007) no. 1, pp. 13-26. http://geodesic.mathdoc.fr/item/SJC_2007_1_1_a2/