Lagrangian Multiform for Cyclotomic Gaudin Models
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a Lagrangian multiform for the class of cyclotomic (rational) Gaudin models by formulating its hierarchy within the Lie dialgebra framework of Semenov-Tian-Shansky and by using the framework of Lagrangian multiforms on coadjoint orbits. This provides the first example of a Lagrangian multiform for an integrable hierarchy whose classical $r$-matrix is non-skew-symmetric and spectral parameter-dependent. As an important by-product of the construction, we obtain a Lagrangian multiform for the periodic Toda chain by choosing an appropriate realisation of the cyclotomic Gaudin Lax matrix. This fills a gap in the landscape of Toda models as only the open and infinite chains had been previously cast into the Lagrangian multiform framework. A slightly different choice of realisation produces the so-called discrete self-trapping (DST) model. We demonstrate the versatility of the framework by coupling the periodic Toda chain with the DST model and by obtaining a Lagrangian multiform for the corresponding integrable hierarchy.
Keywords: Lagrangian multiforms, integrable systems, classical $r$-matrix, Gaudin models.
@article{SIGMA_2024_20_a99,
     author = {Vincent Caudrelier and Anup Anand Singh and Beno{\^\i}t Vicedo},
     title = {Lagrangian {Multiform} for {Cyclotomic} {Gaudin} {Models}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a99/}
}
TY  - JOUR
AU  - Vincent Caudrelier
AU  - Anup Anand Singh
AU  - Benoît Vicedo
TI  - Lagrangian Multiform for Cyclotomic Gaudin Models
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a99/
LA  - en
ID  - SIGMA_2024_20_a99
ER  - 
%0 Journal Article
%A Vincent Caudrelier
%A Anup Anand Singh
%A Benoît Vicedo
%T Lagrangian Multiform for Cyclotomic Gaudin Models
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a99/
%G en
%F SIGMA_2024_20_a99
Vincent Caudrelier; Anup Anand Singh; Benoît Vicedo. Lagrangian Multiform for Cyclotomic Gaudin Models. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a99/

[1] Abedin R., Maximov S., Stolin A., Generalized classical Yang–Baxter equation and regular decompositions, arXiv: 2405.04440

[2] Adler M., “On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de\thinspace Vries type equations”, Invent. Math., 50 (1978), 219–248 | DOI

[3] Adler M., van Moerbeke P., “Completely integrable systems, Euclidean Lie algebras, and curves”, Adv. Math., 38 (1980), 267–317 | DOI

[4] Avan J., Classical $R$-matrices with general automorphism groups, Preprint BROWN-HET-781, 1991, 15 pp.

[5] Avan J., “From rational to trigonometric $R$-matrices”, Phys. Lett. A, 156 (1991), 61–68 | DOI

[6] Avan J., Talon M., “Graded $R$-matrices for integrable systems”, Nuclear Phys. B, 352 (1991), 215–249 | DOI

[7] Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2003 | DOI

[8] Babelon O., Viallet C.-M., “Hamiltonian structures and Lax equations”, Phys. Lett. B, 237 (1990), 411–416 | DOI

[9] Bobenko A.I., Suris Yu.B., “Integrable systems on quad-graphs”, Int. Math. Res. Not., 2002 (2002), 573–611, arXiv: nlin.SI/0110004 | DOI

[10] Caudrelier V., Crampé N., “Classical $N$-reflection equation and Gaudin models”, Lett. Math. Phys., 109 (2019), 843–856, arXiv: 1803.09931 | DOI

[11] Caudrelier V., Dell'Atti M., Singh A.A., “Lagrangian multiforms on coadjoint orbits for finite-dimensional integrable systems”, Lett. Math. Phys., 114 (2024), 34, 52 pp., arXiv: 2307.07339 | DOI

[12] Caudrelier V., Nijhoff F., Sleigh D., Vermeeren M., “Lagrangian multiforms on Lie groups and non-commuting flows”, J. Geom. Phys., 187 (2023), 104807, 35 pp., arXiv: 2204.09663 | DOI

[13] Caudrelier V., Stoppato M., “Hamiltonian multiform description of an integrable hierarchy”, J. Math. Phys., 61 (2020), 123506, 25 pp., arXiv: 2004.01164 | DOI

[14] Caudrelier V., Stoppato M., “Multiform description of the AKNS hierarchy and classical $r$-matrix”, J. Phys. A, 54 (2021), 235204, 43 pp., arXiv: 2010.07163 | DOI

[15] Caudrelier V., Stoppato M., Vicedo B., “Classical Yang–Baxter equation, Lagrangian multiforms and ultralocal integrable hierarchies”, Comm. Math. Phys., 405 (2024), 12, 67 pp., arXiv: 2201.08286 | DOI

[16] Christiansen P.L., Jørgensen M.F., Kuznetsov V.B., “On integrable systems close to the Toda lattice”, Lett. Math. Phys., 29 (1993), 165–173 | DOI

[17] Eilbeck J.C., Lomdahl P.S., Scott A.C., “The discrete self-trapping equation”, Phys. D, 16 (1985), 318–338 | DOI

[18] Flaschka H., “The Toda lattice. II Existence of integrals”, Phys. Rev. B, 9 (1974), 1924–1925 | DOI

[19] Gaudin M., “Diagonalisation d'une classe d'Hamiltoniens de spin”, J. Physique, 37 (1976), 1089–1098 | DOI

[20] Gaudin M., La fonction d'onde de Bethe, Collect. Commissariat Énerg. Atom. Sér. Sci., Masson, Paris, 1983

[21] Kostant B., “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34 (1979), 195–338 | DOI

[22] Kuznetsov V.B., Salerno M., Sklyanin E.K., “Quantum Bäcklund transformation for the integrable DST model”, J. Phys. A, 33 (2000), 171–189, arXiv: solv-int/9908002 | DOI

[23] Lobb S., Nijhoff F., “Lagrangian multiforms and multidimensional consistency”, J. Phys. A, 42 (2009), 454013, 18 pp., arXiv: 0903.4086 | DOI

[24] Mikhailov A.V., “The reduction problem and the inverse scattering method”, Phys. D, 3 (1981), 73–117 | DOI

[25] Nijhoff F.W., “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58, arXiv: nlin.SI/0110027 | DOI

[26] Nijhoff F.W., “Lagrangian 3-form structure for the Darboux system and the KP hierarchy”, Lett. Math. Phys., 113 (2023), 27, 19 pp., arXiv: 2206.14338 | DOI

[27] Petrera M., Suris Yu.B., “Variational symmetries and pluri-Lagrangian systems in classical mechanics”, J. Nonlinear Math. Phys., 24 (2017), 121–145, arXiv: 1710.01526 | DOI

[28] Petrera M., Vermeeren M., “Variational symmetries and pluri-Lagrangian structures for integrable hierarchies of PDEs”, Eur. J. Math., 7 (2021), 741–765, arXiv: 1906.04535 | DOI

[29] Reshetikhin N.Yu., Faddeev L.D., “Hamiltonian structures for integrable field theory models”, Theoret. and Math. Phys., 56 (1983), 847–862 | DOI

[30] Semenov-Tian-Shansky M., Integrable systems: the $r$-matrix approach, Preprint RIMS-1650, Kyoto University, 2008

[31] Skrypnyk T., “New integrable Gaudin-type systems, classical $r$-matrices and quasigraded Lie algebras”, Phys. Lett. A, 334 (2005), 390–399 | DOI

[32] Sleigh D., Nijhoff F., Caudrelier V., “A variational approach to Lax representations”, J. Geom. Phys., 142 (2019), 66–79, arXiv: 1812.08648 | DOI

[33] Sleigh D., Nijhoff F., Caudrelier V., “Variational symmetries and Lagrangian multiforms”, Lett. Math. Phys., 110 (2020), 805–826, arXiv: 1906.05084 | DOI

[34] Sleigh D., Nijhoff F.W., Caudrelier V., “Lagrangian multiforms for Kadomtsev–Petviashvili (KP) and the Gelfand–Dickey hierarchy”, Int. Math. Res. Not., 2023 (2023), 1420–1460, arXiv: 2011.04543 | DOI

[35] Sleigh D., Vermeeren M., “Semi-discrete Lagrangian 2-forms and the Toda hierarchy”, J. Phys. A, 55 (2022), 475204, 24 pp., arXiv: 2204.13063 | DOI

[36] Suris Yu.B., “Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms”, J. Geom. Mech., 5 (2013), 365–379, arXiv: 1212.3314 | DOI

[37] Suris Yu.B., Vermeeren M., “On the Lagrangian structure of integrable hierarchies”, Advances in Discrete Differential Geometry, Springer, Berlin, 2016, 347–378, arXiv: 1510.03724 | DOI

[38] Symes W.W., “Systems of Toda type, inverse spectral problems, and representation theory”, Invent. Math., 59 (1980), 13–51 | DOI

[39] Toda T., “Waves in nonlinear lattice”, Prog. Theor. Phys., 45 (1970), 174–200 | DOI

[40] Vermeeren M., “Continuum limits of pluri-Lagrangian systems”, J. Integrable Syst., 4 (2019), xyy020, 34 pp., arXiv: 1706.06830 | DOI

[41] Vicedo B., Young C., “Cyclotomic Gaudin models: construction and Bethe ansatz”, Comm. Math. Phys., 343 (2016), 971–1024, arXiv: 1409.6937 | DOI

[42] Vicedo B., Young C., “Cyclotomic Gaudin models with irregular singularities”, J. Geom. Phys., 121 (2017), 247–278, arXiv: 1611.09059 | DOI

[43] Yoo-Kong S., Lobb S., Nijhoff F., “Discrete-time Calogero–Moser system and Lagrangian 1-form structure”, J. Phys. A, 44 (2011), 365203, 39 pp., arXiv: 1102.0663 | DOI