Combinatorial Interpretations of Cranks of Overpartitions and Partitions without Repeated Odd Parts
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give combinatorial interpretations of two residual cranks of overpartitions defined by Bringmann, Lovejoy and Osburn in 2009 analogous to the crank of partitions given by Andrews and the first author in 1988. As a consequence, we give new versions of their definitions without adjusted weights. Furthermore, we investigate the combinatorial interpretation of an $M_2$-crank of partitions without repeated odd parts and explore connections of these statistics with their companion rank counterparts and the tenth order mock theta functions of Ramanujan.
Keywords: overpartitions, residual crank.
@article{SIGMA_2024_20_a96,
     author = {Frank G. Garvan and Rishabh Sarma},
     title = {Combinatorial {Interpretations} of {Cranks} of {Overpartitions} and {Partitions} without {Repeated} {Odd} {Parts}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a96/}
}
TY  - JOUR
AU  - Frank G. Garvan
AU  - Rishabh Sarma
TI  - Combinatorial Interpretations of Cranks of Overpartitions and Partitions without Repeated Odd Parts
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a96/
LA  - en
ID  - SIGMA_2024_20_a96
ER  - 
%0 Journal Article
%A Frank G. Garvan
%A Rishabh Sarma
%T Combinatorial Interpretations of Cranks of Overpartitions and Partitions without Repeated Odd Parts
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a96/
%G en
%F SIGMA_2024_20_a96
Frank G. Garvan; Rishabh Sarma. Combinatorial Interpretations of Cranks of Overpartitions and Partitions without Repeated Odd Parts. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a96/

[1] Andrews G.E., The theory of partitions, Encyclopedia Math. Appl., Cambridge University Press, Cambridge, 1984 | DOI

[2] Andrews G.E., Garvan F.G., “Dyson's crank of a partition”, Bull. Amer. Math. Soc. (N.S.), 18 (1988), 167–171 | DOI

[3] Andrews G.E., Garvan F.G., “Ramanujan's “lost” notebook. VI The mock theta conjectures”, Adv. Math., 73 (1989), 242–255 | DOI

[4] Atkin A.O.L., Swinnerton-Dyer P., “Some properties of partitions”, Proc. London Math. Soc., 4 (1954), 84–106 | DOI

[5] Berkovich A., Garvan F.G., “Some observations on Dyson's new symmetries of partitions”, J. Combin. Theory Ser. A, 100 (2002), 61–93, arXiv: math.CO/0203111 | DOI

[6] Bringmann K., Lovejoy J., Osburn R., “Rank and crank moments for overpartitions”, J. Number Theory, 129 (2009), 1758–1772, arXiv: 0807.4877 | DOI

[7] Choi D., “Weakly holomorphic modular forms of half-integral weight with nonvanishing constant terms modulo $\ell$”, Trans. Amer. Math. Soc., 361 (2009), 3817–3828 | DOI

[8] Choi Y.-S., “Tenth order mock theta functions in Ramanujan's lost notebook”, Invent. Math., 136 (1999), 497–569 | DOI

[9] Choi Y.-S., “Tenth order mock theta functions in Ramanujan's lost notebook. II”, Adv. Math., 156 (2000), 180–285 | DOI

[10] Corteel S., Lovejoy J., “Overpartitions”, Trans. Amer. Math. Soc., 356 (2004), 1623–1635 | DOI

[11] Garvan F.G., Generalizations of Dyson's rank, Ph.D. Thesis, The Pennsylvania State University, 1986

[12] Garvan F.G., “Combinatorial interpretations of Ramanujan's partition congruences”, Ramanujan Revisited (Urbana-Champaign, Ill., 1987), Academic Press, Boston, MA, 1988, 29–45

[13] Garvan F.G., “New combinatorial interpretations of Ramanujan's partition congruences mod $5,7$ and $11$”, Trans. Amer. Math. Soc., 305 (1988), 47–77 | DOI

[14] Garvan F.G., Jennings-Shaffer C., “The spt-crank for overpartitions”, Acta Arith., 166 (2014), 141–188, arXiv: 1311.3680 | DOI

[15] Hickerson D., “A proof of the mock theta conjectures”, Invent. Math., 94 (1988), 639–660 | DOI

[16] Jennings-Shaffer C., “Overpartition rank differences modulo 7 by Maass forms”, J. Number Theory, 163 (2016), 331–358, arXiv: 1601.06671 | DOI

[17] Lovejoy J., Osburn R., “Rank differences for overpartitions”, Q. J. Math., 59 (2008), 257–273, arXiv: math.NT/0703326 | DOI

[18] Lovejoy J., Osburn R., “$M_2$-rank differences for partitions without repeated odd parts”, J. Théor. Nombres Bordeaux, 21 (2009), 313–334, arXiv: 0705.4535 | DOI

[19] Lovejoy J., Osburn R., “$M_2$-rank differences for overpartitions”, Acta Arith., 144 (2010), 193–212, arXiv: 0908.0882 | DOI

[20] Ramanujan S., The lost notebook and other unpublished papers, Springer, Berlin, 1988