Mots-clés : scale invariance
@article{SIGMA_2024_20_a95,
author = {Thomas L. Curtright},
title = {Scale {Invariant} {Scattering} and {Bernoulli} {Numbers}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a95/}
}
Thomas L. Curtright. Scale Invariant Scattering and Bernoulli Numbers. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a95/
[1] Abramowitz M., Stegun I., Handbook of mathematical functions, United States Department of Commerce, National Bureau of Standards, 1970
[2] Curtright T., “Mean sinc sums and scale invariant scattering”, J. Math. Phys., 65 (2024), 012104, 4 pp., arXiv: 2212.13884 | DOI
[3] Curtright T., Vignat C., “Scale invariant scattering in 2D”, Bulg. J. Phys., 51 (2024), 104–108, arXiv: 2303.14861 | DOI
[4] Dunne G.V., Schubert C., “Bernoulli number identities from quantum field theory and topological string theory”, Commun. Number Theory Phys., 7 (2013), 225–249, arXiv: math.NT/0406610 | DOI
[5] Gosper R.W., Ismail M.E.H., Zhang R., “On some strange summation formulas”, Illinois J. Math., 37 (1993), 240–277 | DOI
[6] Herscovici O., Mansour T., “The Miki-type identity for the Apostol–Bernoulli numbers”, Ann. Math. Inform., 46 (2016), 97–114
[7] Luschny P.H.N., An introduction to the Bernoulli function, arXiv: 2009.06743
[8] Luschny P.H.N., The Bernoulli manifesto. A survey on the occasion of the 300-th anniversary of the publication of Jacob Bernoulli's Ars Conjectandi, 1713–2013 http://luschny.de/math/zeta/The-Bernoulli-Manifesto.html
[9] Miki H., “A relation between Bernoulli numbers”, J. Number Theory, 10 (1978), 297–302 | DOI
[10] Riesz M., “Sur l'hypothèse de Riemann”, Acta Math., 40 (1916), 185–190 | DOI
[11] Weisstein E.W., Bernoulli number, https://mathworld.wolfram.com/BernoulliNumber.html