Mirrors to Del Pezzo Surfaces and the Classification of $T$-Polygons
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a new geometric proof of the classification of $T$-polygons, a theorem originally due to Kasprzyk, Nill and Prince, using ideas from mirror symmetry. In particular, this gives a completely geometric proof that any two toric $\mathbb{Q}$-Gorenstein degenerations of a smooth del Pezzo $X$ surface are connected via trees of rational curves in the moduli space of $X$.
Keywords: mirror symmetry, del Pezzo surfaces
Mots-clés : $T$-polygons, mutations, maximally mutable Laurent polynomial.
@article{SIGMA_2024_20_a94,
     author = {Wendelin Lutz},
     title = {Mirrors to {Del} {Pezzo} {Surfaces} and the {Classification} of $T${-Polygons}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a94/}
}
TY  - JOUR
AU  - Wendelin Lutz
TI  - Mirrors to Del Pezzo Surfaces and the Classification of $T$-Polygons
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a94/
LA  - en
ID  - SIGMA_2024_20_a94
ER  - 
%0 Journal Article
%A Wendelin Lutz
%T Mirrors to Del Pezzo Surfaces and the Classification of $T$-Polygons
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a94/
%G en
%F SIGMA_2024_20_a94
Wendelin Lutz. Mirrors to Del Pezzo Surfaces and the Classification of $T$-Polygons. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a94/

[1] Akhtar M., Coates T., Corti A., Heuberger L., Kasprzyk A., Oneto A., Petracci A., Prince T., Tveiten K., “Mirror symmetry and the classification of orbifold del Pezzo surfaces”, Proc. Amer. Math. Soc., 144 (2016), 513–527, arXiv: 1501.05334 | DOI

[2] Akhtar M., Kasprzyk A., Singularity content, arXiv: 1401.5458

[3] Alberich-Carramiñana M., Geometry of the plane Cremona maps, Lecture Notes in Math., 1769, Springer, Berlin, 2002 | DOI

[4] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Ergeb. Math. Grenzgeb., 4, Springer, Berlin, 1984 | DOI

[5] Blanc J., “Symplectic birational transformations of the plane”, Osaka J. Math., 50 (2013), 573–590, arXiv: 1012.0706

[6] Clemens H., Kollár J., Mori S., “Higher-dimensional complex geometry”, Astérisque, 166, 1988, 1–144

[7] Coates T., Kasprzyk A.M., Pitton G., Tveiten K., “Maximally mutable Laurent polynomials”, Proc. A, 477 (2021), 20210584, 21 pp., arXiv: 2107.14253 | DOI

[8] Corti A., Cluster varieties and toric specializations of Fano varieties, arXiv: 2304.04141

[9] Corti A., Kaloghiros A.-S., “The Sarkisov program for Mori fibred Calabi–Yau pairs”, Algebr. Geom., 3 (2016), 370–384, arXiv: 1504.00557 | DOI

[10] Ducat T., “The 3-dimensional Lyness map and a self-mirror log Calabi–Yau 3-fold”, Manuscripta Math., 174 (2024), 87–140, arXiv: 2105.07843 | DOI

[11] Friedman R., On the geometry of anticanonical pairs, arXiv: 1502.02560

[12] Gross M., Hacking P., Keel S., “Birational geometry of cluster algebras”, Algebr. Geom., 2 (2015), 137–175, arXiv: 1309.2573 | DOI

[13] Gross M., Hacking P., Keel S., “Mirror symmetry for log Calabi–Yau surfaces I”, Publ. Math. Inst. Hautes Études Sci., 122 (2015), 65–168, arXiv: 1106.4977 | DOI

[14] Gross M., Hacking P., Keel S., “Moduli of surfaces with an anti-canonical cycle”, Compos. Math., 151 (2015), 265–291, arXiv: 1211.6367 | DOI

[15] Hacking P., Keating A., “Homological mirror symmetry for log Calabi–Yau surfaces”, Geom. Topol., 26 (2022), 3747–3833, arXiv: 2005.05010 | DOI

[16] Ilten N.O., “Mutations of Laurent polynomials and flat families with toric fibers”, SIGMA, 8 (2012), 047, 7 pp., arXiv: 1205.4664 | DOI

[17] Kasprzyk A., Nill B., Prince T., “Minimality and mutation-equivalence of polygons”, Forum Math. Sigma, 5 (2017), e18, 48 pp., arXiv: 1501.05335 | DOI

[18] Lutz W., On Gromov–Witten invariants of blowups and the classification of T-polygons, Ph.D. Thesis, University College London, 2022

[19] Tveiten K., “Period integrals and mutation”, Trans. Amer. Math. Soc., 370 (2018), 8377–8401, arXiv: 1501.05095 | DOI