Mots-clés : Frobenius norm, zonal polynomial.
@article{SIGMA_2024_20_a93,
author = {Armine Bagyan and Donald Richards},
title = {Complete {Asymptotic} {Expansions} for the {Normalizing} {Constants} of {High-Dimensional} {Matrix} {Bingham} and {Matrix} {Langevin} {Distributions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a93/}
}
TY - JOUR AU - Armine Bagyan AU - Donald Richards TI - Complete Asymptotic Expansions for the Normalizing Constants of High-Dimensional Matrix Bingham and Matrix Langevin Distributions JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a93/ LA - en ID - SIGMA_2024_20_a93 ER -
%0 Journal Article %A Armine Bagyan %A Donald Richards %T Complete Asymptotic Expansions for the Normalizing Constants of High-Dimensional Matrix Bingham and Matrix Langevin Distributions %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a93/ %G en %F SIGMA_2024_20_a93
Armine Bagyan; Donald Richards. Complete Asymptotic Expansions for the Normalizing Constants of High-Dimensional Matrix Bingham and Matrix Langevin Distributions. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a93/
[1] Bagyan A., Richards D., “Complete asymptotic expansions and the high-dimensional Bingham distributions”, TEST, 33 (2024), 540–563, arXiv: 2303.04575 | DOI
[2] Bingham C., “An antipodally symmetric distribution on the sphere”, Ann. Statist., 2 (1974), 1201–1225 | DOI
[3] Bingham C., Chang T., Richards D., “Approximating the matrix Fisher and Bingham distributions: applications to spherical regression and Procrustes analysis”, J. Multivariate Anal., 41 (1992), 314–337 | DOI
[4] Chikuse Y., Statistics on special manifolds, Lect. Notes Stat., 174, Springer, New York, 2003 | DOI
[5] de Waal D.J., “On the normalizing constant for the Bingham–von Mises–Fisher matrix distribution”, South African Statist. J., 13 (1979), 103–112 | DOI
[6] Ding H., Gross K.I., Richards D.St.P., “Ramanujan's master theorem for symmetric cones”, Pacific J. Math., 175 (1996), 447–490 | DOI
[7] Dryden I.L., “Statistical analysis on high-dimensional spheres and shape spaces”, Ann. Statist., 33 (2005), 1643–1665, arXiv: math/0508279 | DOI
[8] Edelman A., Kostlan E., Shub M., How many eigenvalues of a random matrix are real?, J. Amer. Math. Soc., 7 (1994), 247–267 | DOI
[9] Faraut J., Korányi A., Analysis on symmetric cones, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1994 | DOI
[10] Granados-Garcia G., Fiecas M., Babak S., Fortin N.J., Ombao H., “Brain waves analysis via a non-parametric Bayesian mixture of autoregressive kernels”, Comput. Statist. Data Anal., 174 (2022), 107409, 181 pp., arXiv: 2102.11971 | DOI
[11] Gross K.I., Richards D.St.P., “Special functions of matrix argument. I Algebraic induction, zonal polynomials, and hypergeometric functions”, Trans. Amer. Math. Soc., 301 (1987), 781–811 | DOI
[12] Hoff P.D., “Simulation of the matrix Bingham-von Mises–Fisher distribution, with applications to multivariate and relational data”, J. Comput. Graph. Statist., 18 (2009), 438–456, arXiv: 0712.4166 | DOI
[13] Holbrook A., Vandenberg-Rodes A., Shahbaba B., Bayesian inference on matrix manifolds for linear dimensionality reduction, arXiv: 1606.04478
[14] Horn R.A., Johnson C.R., Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2012 | DOI
[15] Impens C., “Stirling's series made easy”, Amer. Math. Monthly, 110 (2003), 730–735 | DOI
[16] James A.T., “Distributions of matrix variates and latent roots derived from normal samples”, Ann. Math. Statist., 35 (1964), 475–501 | DOI
[17] James A.T., “Calculation of zonal polynomial coefficients by use of the Laplace–Beltrami operator”, Ann. Math. Statist., 39 (1968), 1711–1718 | DOI
[18] James A.T., “The variance information manifold and the functions on it”, Multivariate Analysis III crossref{https://doi.org/10.1016/B978-0-12-426653-7.50016-8}, Academic Press, New York, 1973, 157–169
[19] Jauch M., Hoff P.D., Dunson D.B., “Monte Carlo simulation on the Stiefel manifold via polar expansion”, J. Comput. Graph. Statist., 30 (2021), 622–631, arXiv: 1906.07684 | DOI
[20] Jiu L., Koutschan C., “Calculation and properties of zonal polynomials”, Math. Comput. Sci., 14 (2020), 623–640, arXiv: 2001.11599 | DOI
[21] Jupp P.E., Mardia K.V., “Maximum likelihood estimators for the matrix von Mises–Fisher and Bingham distributions”, Ann. Statist., 7 (1979), 599–606 | DOI
[22] Jupp P.E., Mardia K.V., “A unified view of the theory of directional statistics, 1975–1988”, Int. Stat. Rev., 57 (1989), 261–294 | DOI
[23] Khatri C.G., Mardia K.V., “The von Mises–Fisher matrix distribution in orientation statistics”, J. Roy. Statist. Soc. Ser. B, 39 (1977), 95–106 | DOI
[24] Kume A., Preston S.P., Wood A.T.A., “Saddlepoint approximations for the normalizing constant of Fisher–Bingham distributions on products of spheres and Stiefel manifolds”, Biometrika, 100 (2013), 971–984 | DOI
[25] Kume A., Wood A.T.A., “Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants”, Biometrika, 92 (2005), 465–476 | DOI
[26] Kushner H.B., “On the expansion of $C^*_\rho(V+I)$ as a sum of zonal polynomials”, J. Multivariate Anal., 17 (1985), 84–98 | DOI
[27] Ledermann W., Introduction to group characters, Cambridge University Press, Cambridge, 1977 | DOI
[28] Mantoux C., Couvy-Duchesne B., Cacciamani F., Epelbaum S., Durrleman S., Allassonnière S., “Understanding the variability in graph data sets through statistical modeling on the Stiefel manifold”, Entropy, 23 (2021), 490, 34 pp. | DOI
[29] Mardia K.V., Jupp P.E., Directional statistics, Wiley Ser. Probab. Stat., John Wiley Sons, Chichester, 1999 | DOI
[30] Muirhead R.J., Aspects of multivariate statistical theory, Wiley Ser. Probab. Math. Stat., John Wiley Sons, New York, 1982 | DOI
[31] Oualkacha K., Rivest L.P., “On the estimation of an average rigid body motion”, Biometrika, 99 (2012), 585–598 | DOI
[32] Parkhurst A.M., James A.T., “Zonal polynomials of order 1 through 12”, Selected Tables in Mathematical Statistics, v. II, American Mathematical Society, Providence, RI, 1974, 199–388
[33] Prentice M.J., “Antipodally symmetric distributions for orientation statistics”, J. Statist. Plann. Inference, 6 (1982), 205–214 | DOI
[34] Richards D.St.P., “Applications of invariant differential operators to multivariate distribution theory”, SIAM J. Appl. Math., 45 (1985), 280–288 | DOI
[35] Richards D.St.P., “Functions of matrix argument”, NIST Handbook of Mathematical Functions, 35, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, 2010, 767–774
[36] Sudlow C., Gallacher J., Allen N., Beral V., Burton P., Danesh J., Downey P., Elliott P., Green J., Landray M., “UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age”, PLoS Med., 12 (2015), e1001779, 11 pp. | DOI