Mots-clés : Lie groupoids, convolution, double groupoids
@article{SIGMA_2024_20_a92,
author = {Angel Rom\'an and Joel Villatoro},
title = {Convolution {Algebras} of {Double} {Groupoids} and {Strict} {2-Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a92/}
}
Angel Román; Joel Villatoro. Convolution Algebras of Double Groupoids and Strict 2-Groups. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a92/
[1] Amini M., “$C^*$-algebras of 2-groupoids”, Rocky Mountain J. Math., 46 (2016), 693–728 | DOI
[2] Blohmann C., Tang X., Weinstein A., “Hopfish structure and modules over irrational rotation algebras”, Non-Commutative Geometry in Mathematics and Physics, Contemp. Math., 462, American Mathematical Society, Providence, RI, 2008, 23–40, arXiv: math.QA/0604405 | DOI
[3] Crainic M., Fernandes R.L., “Lectures on integrability of Lie brackets”, Lectures on Poisson Geometry, Geom. Topol. Monogr., 17, Geometry Topology Publications, Coventry, 2011, 1–107, arXiv: math.DG/0611259 | DOI
[4] Eckmann B., Hilton P.J., “Group-like structures in general categories. I. Multiplications and comultiplications”, Math. Ann., 145 (1961), 227–255 | DOI
[5] Knapp A.W., Lie groups beyond an introduction, Progr. Math., 140, 2nd ed., Birkhäuser, Boston, MA, 2002 | DOI
[6] Mackenzie K.C.H., General theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Ser., 213, Cambridge University Press, Cambridge, 2005 | DOI
[7] Muhly P.S., Renault J.N., Williams D.P., “Equivalence and isomorphism for groupoid $C^\ast$-algebras”, J. Operator Theory, 17, 1987, 3–22
[8] Tang X., Weinstein A., Zhu C., “Hopfish algebras”, Pacific J. Math., 231 (2007), 193–216, arXiv: math.QA/0510421 | DOI
[9] Williams D.P., A tool kit for groupoid $C^*$-algebras, Math. Surveys Monogr., 241, American Mathematical Society, Providence, RI, 2019 | DOI