Convolution Algebras of Double Groupoids and Strict 2-Groups
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Double groupoids are a type of higher groupoid structure that can arise when one has two distinct groupoid products on the same set of arrows. A particularly important example of such structures is the irrational torus and, more generally, strict 2-groups. Groupoid structures give rise to convolution operations on the space of arrows. Therefore, a double groupoid comes equipped with two product operations on the space of functions. In this article we investigate in what sense these two convolution operations are compatible. We use the representation theory of compact Lie groups to get insight into a certain class of 2-groups.
Keywords: 2-groups, Haar systems.
Mots-clés : Lie groupoids, convolution, double groupoids
@article{SIGMA_2024_20_a92,
     author = {Angel Rom\'an and Joel Villatoro},
     title = {Convolution {Algebras} of {Double} {Groupoids} and {Strict} {2-Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a92/}
}
TY  - JOUR
AU  - Angel Román
AU  - Joel Villatoro
TI  - Convolution Algebras of Double Groupoids and Strict 2-Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a92/
LA  - en
ID  - SIGMA_2024_20_a92
ER  - 
%0 Journal Article
%A Angel Román
%A Joel Villatoro
%T Convolution Algebras of Double Groupoids and Strict 2-Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a92/
%G en
%F SIGMA_2024_20_a92
Angel Román; Joel Villatoro. Convolution Algebras of Double Groupoids and Strict 2-Groups. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a92/

[1] Amini M., “$C^*$-algebras of 2-groupoids”, Rocky Mountain J. Math., 46 (2016), 693–728 | DOI

[2] Blohmann C., Tang X., Weinstein A., “Hopfish structure and modules over irrational rotation algebras”, Non-Commutative Geometry in Mathematics and Physics, Contemp. Math., 462, American Mathematical Society, Providence, RI, 2008, 23–40, arXiv: math.QA/0604405 | DOI

[3] Crainic M., Fernandes R.L., “Lectures on integrability of Lie brackets”, Lectures on Poisson Geometry, Geom. Topol. Monogr., 17, Geometry Topology Publications, Coventry, 2011, 1–107, arXiv: math.DG/0611259 | DOI

[4] Eckmann B., Hilton P.J., “Group-like structures in general categories. I. Multiplications and comultiplications”, Math. Ann., 145 (1961), 227–255 | DOI

[5] Knapp A.W., Lie groups beyond an introduction, Progr. Math., 140, 2nd ed., Birkhäuser, Boston, MA, 2002 | DOI

[6] Mackenzie K.C.H., General theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Ser., 213, Cambridge University Press, Cambridge, 2005 | DOI

[7] Muhly P.S., Renault J.N., Williams D.P., “Equivalence and isomorphism for groupoid $C^\ast$-algebras”, J. Operator Theory, 17, 1987, 3–22

[8] Tang X., Weinstein A., Zhu C., “Hopfish algebras”, Pacific J. Math., 231 (2007), 193–216, arXiv: math.QA/0510421 | DOI

[9] Williams D.P., A tool kit for groupoid $C^*$-algebras, Math. Surveys Monogr., 241, American Mathematical Society, Providence, RI, 2019 | DOI