@article{SIGMA_2024_20_a91,
author = {Thibault Didier D\'ecoppet},
title = {Extension {Theory} and {Fermionic} {Strongly} {Fusion} {2-Categories} (with an {Appendix} by {Thibault} {Didier} {D\'ecoppet} and {Theo} {Johnson-Freyd)}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a91/}
}
TY - JOUR AU - Thibault Didier Décoppet TI - Extension Theory and Fermionic Strongly Fusion 2-Categories (with an Appendix by Thibault Didier Décoppet and Theo Johnson-Freyd) JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a91/ LA - en ID - SIGMA_2024_20_a91 ER -
%0 Journal Article %A Thibault Didier Décoppet %T Extension Theory and Fermionic Strongly Fusion 2-Categories (with an Appendix by Thibault Didier Décoppet and Theo Johnson-Freyd) %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a91/ %G en %F SIGMA_2024_20_a91
Thibault Didier Décoppet. Extension Theory and Fermionic Strongly Fusion 2-Categories (with an Appendix by Thibault Didier Décoppet and Theo Johnson-Freyd). Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a91/
[1] Crans S.E., “Generalized centers of braided and sylleptic monoidal $2$-categories”, Adv. Math., 136 (1998), 183–223 | DOI
[2] Cui S.X., “Four dimensional topological quantum field theories from $G$-crossed braided categories”, Quantum Topol., 10 (2019), 593–676, arXiv: 1610.07628 | DOI
[3] Davydov A., Nikshych D., “Braided Picard groups and graded extensions of braided tensor categories”, Selecta Math. (N.S.), 27 (2021), 65, 87 pp., arXiv: 2006.08022 | DOI
[4] Décoppet T.D., “Multifusion categories and finite semisimple 2-categories”, J. Pure Appl. Algebra, 226 (2022), 107029, 16 pp., arXiv: 2012.15774 | DOI
[5] Décoppet T.D., “Weak fusion 2-categories”, Cah. Topol. Géom. Différ. Catég., 63 (2022), 3–24,, arXiv: 2103.15150
[6] Décoppet T.D., “The Morita theory of fusion 2-categories”, High. Struct., 7 (2023), 234–292, arXiv: 2208.08722 | DOI
[7] Décoppet T.D., “Drinfeld centers and Morita equivalence classes of fusion 2-categories”, Compos. Math. (to appear) , arXiv: 2211.04917
[8] Décoppet T.D., “Finite semisimple module 2-categories”, Selecta Math. (N.S.) (to appear) , arXiv: 2107.11037
[9] Décoppet T.D., “On the dualizability of fusion 2-categoriess”, Quantum Topol. (to appear) , arXiv: 2311.16827
[10] Décoppet T.D., Yu M., Fiber 2-functors and Tambara–Yamagami fusion 2-categories, arXiv: 2306.08117
[11] Douglas C.L., Reutter D.J., Fusion 2-categories and a state-sum invariant for 4-manifolds, arXiv: 1812.11933
[12] Elgueta J., “Cohomology and deformation theory of monoidal 2-categories. I”, Adv. Math., 182 (2004), 204–277, arXiv: math.QA/0204099 | DOI
[13] Elgueta J., “Representation theory of 2-groups on Kapranov and Voevodsky's 2-vector spaces”, Adv. Math., 213 (2007), 53–92, arXiv: math.CT/0408120 | DOI
[14] Etingof P., Gelaki S., “Descent and forms of tensor categories”, Int. Math. Res. Not., 2012 (2012), 3040–3063, arXiv: 1102.0657 | DOI
[15] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., 205, American Mathematical Society, Providence, RI, 2015 | DOI
[16] Etingof P., Nikshych D., Ostrik V., “Fusion categories and homotopy theory”, Quantum Topol., 1 (2010), 209–273, arXiv: 0909.3140 | DOI
[17] Gaiotto D., Johnson-Freyd T., “Symmetry protected topological phases and generalized cohomology”, J. High Energy Phys., 2019 (2019), 007, 34 pp., arXiv: 1712.07950 | DOI
[18] Gaiotto D., Johnson-Freyd T., Condensations in higher categories, arXiv: 1905.09566
[19] Gu Z.-C., Wen X.-G., “Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear $\sigma$ models and a special group supercohomology theory”, Phys. Rev. B, 90 (2014), 115141, 59 pp., arXiv: 1201.2648 | DOI
[20] Johnson-Freyd T., “On the classification of topological orders”, Comm. Math. Phys., 393 (2022), 989–1033, arXiv: 2003.06663 | DOI
[21] Johnson-Freyd T., “(3+1)D topological orders with only a $\mathbb{Z}/2$-charged particle”, Comm. Math. Phys. (to appear) , arXiv: 2011.11165
[22] Johnson-Freyd T., Reutter D.J., Super-duper vector spaces I, 2023 https://homepages.uni-regensburg.de/l̃um63364/ConferenceFFT/Reutter.pdf
[23] Johnson-Freyd T., Reutter D., “Minimal nondegenerate extensions”, J. Amer. Math. Soc., 37 (2024), 81–150, arXiv: 2105.15167 | DOI
[24] Johnson-Freyd T., Yu M., “Fusion 2-categories with no line operators are grouplike”, Bull. Aust. Math. Soc., 104 (2021), 434–442, arXiv: 2010.07950 | DOI
[25] Jones C., Penneys D., Reutter D., “A 3-categorical perspective on $G$-crossed braided categories”, J. Lond. Math. Soc., 107 (2023), 333–406, arXiv: 2009.00405 | DOI
[26] Kapustin A., Thorngren R., “Fermionic SPT phases in higher dimensions and bosonization”, J. High Energy Phys., 2017:10 (2017), 080, 48 pp., arXiv: 1701.08264 | DOI
[27] Kong L., Tian Y., Zhou S., “The center of monoidal 2-categories in (3+1)D Dijkgraaf–{W}itten theory”, Adv. Math., 360 (2020), 106928, 25 pp., arXiv: 1905.04644 | DOI
[28] Lan T., Kong L., Wen X.-G., “Classification of (3+1)D bosonic topological orders (I): The case when pointlike excitations are all bosons”, Phys. Rev. X, 8 (2018), 021074, 24 pp., arXiv: 1704.04221 | DOI
[29] Lan T., Wen X.-G., “Classification of (3+1)D bosonic topological orders (II): The case when some pointlike excitations are fermions”, Phys. Rev. X, 9 (2019), 021005, 37 pp., arXiv: 1801.08530 | DOI
[30] Lurie J., Higher algebra, 2017 https://www.math.ias.edu/l̃urie/papers/HA.pdf
[31] Nikolaus T., Schreiber U., Stevenson D., “Principal $\infty$-bundles: general theory”, J. Homotopy Relat. Struct., 10 (2015), 749–801, arXiv: 1207.0248 | DOI
[32] Pstra̧gowski P., “On dualizable objects in monoidal bicategories”, Theory Appl. Categ., 38 (2022), 257–310, arXiv: 1411.6691
[33] Sanford S., Fusion categories over non-algebraically closed fields, Ph.D. Thesis, Indiana University, 2022 https://www.proquest.com/docview/2715420938/ACDC80FE6AEA477EPQ/1
[34] Schommer-Pries C.J., The classification of two-dimensional extended topological field theories, Ph.D. Thesis, University of California, Berkeley, 2009, arXiv: 1112.1000
[35] Wang Q.-R., Gu Z.-C., “Towards a complete classification of symmetry-protected topological phases for interacting fermions in three dimensions and a general group supercohomology theory”, Phys. Rev. X, 8 (2018), 011055, 29 pp., arXiv: 1703.10937 | DOI