Mots-clés : Miwa transformation.
@article{SIGMA_2024_20_a90,
author = {Bao-Feng Feng and Heng-Chun Hu and Han-Han Sheng and Wei Yin and Guo-Fu Yu},
title = {Integrable {Semi-Discretization} for a {Modified} {Camassa{\textendash}Holm} {Equation} with {Cubic} {Nonlinearity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a90/}
}
TY - JOUR AU - Bao-Feng Feng AU - Heng-Chun Hu AU - Han-Han Sheng AU - Wei Yin AU - Guo-Fu Yu TI - Integrable Semi-Discretization for a Modified Camassa–Holm Equation with Cubic Nonlinearity JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a90/ LA - en ID - SIGMA_2024_20_a90 ER -
%0 Journal Article %A Bao-Feng Feng %A Heng-Chun Hu %A Han-Han Sheng %A Wei Yin %A Guo-Fu Yu %T Integrable Semi-Discretization for a Modified Camassa–Holm Equation with Cubic Nonlinearity %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a90/ %G en %F SIGMA_2024_20_a90
Bao-Feng Feng; Heng-Chun Hu; Han-Han Sheng; Wei Yin; Guo-Fu Yu. Integrable Semi-Discretization for a Modified Camassa–Holm Equation with Cubic Nonlinearity. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a90/
[1] Bies P.M., Górka P., Reyes E.G., “The dual modified Korteweg–de Vries–Fokas–Qiao equation: geometry and local analysis”, J. Math. Phys., 53 (2012), 073710, 19 pp. | DOI
[2] Boutet de Monvel A., Karpenko I., Shepelsky D., “A Riemann–Hilbert approach to the modified Camassa–Holm equation with nonzero boundary conditions”, J. Math. Phys., 61 (2020), 031504, 24 pp., arXiv: 1911.07263 | DOI
[3] Chang X., Szmigielski J., “Lax integrability of the modified Camassa–Holm equation and the concept of peakons”, J. Nonlinear Math. Phys., 23 (2016), 563–572, arXiv: 1610.06537 | DOI
[4] Chang X., Szmigielski J., “Liouville integrability of conservative peakons for a modified CH equation”, J. Nonlinear Math. Phys., 24 (2017), 584–595, arXiv: 1707.04989 | DOI
[5] Chang X., Szmigielski J., “Lax integrability and the peakon problem for the modified Camassa–Holm equation”, Comm. Math. Phys., 358 (2018), 295–341, arXiv: 1705.06451 | DOI
[6] Chen M., Liu S.-Q., Zhang Y., “A two-component generalization of the Camassa–Holm equation and its solutions”, Lett. Math. Phys., 75 (2006), 1–15 | DOI
[7] Chen R.M., Liu Y., Qu C., Zhang S., “Oscillation-induced blow-up to the modified Camassa–{H}olm equation with linear dispersion”, Adv. Math., 272 (2015), 225–251 | DOI
[8] Feng B.-F., “Complex short pulse and coupled complex short pulse equations”, Phys. D, 297 (2015), 62–75, arXiv: 1312.6431 | DOI
[9] Feng B.-F., Maruno K., Ohta Y., “Integrable discretizations for the short wave model of the Camassa–Holm equation”, J. Phys. A, 43 (2010), 265202, 14 pp., arXiv: 1002.3649 | DOI
[10] Feng B.-F., Maruno K., Ohta Y., “Integrable discretizations of the short pulse equation”, J. Phys. A, 43 (2010), 085203, 14 pp., arXiv: 0912.1914 | DOI
[11] Feng B.-F., Maruno K., Ohta Y., “Integrable semi-discretization of a multi-component short pulse equation”, J. Math. Phys., 56 (2015), 043502, 15 pp., arXiv: 1504.00878 | DOI
[12] Feng B.-F., Maruno K., Ohta Y., “An integrable semi-discrete Degasperis–Procesi equation”, Nonlinearity, 30 (2017), 2246–2267, arXiv: 1510.03010 | DOI
[13] Feng B.-F., Sheng H.-H., Yu G.-F., “Integrable semi-discretizations and self-adaptive moving mesh method for a generalized sine-Gordon equation”, Numer. Algorithms, 94 (2023), 351–370 | DOI
[14] Fokas A.S., “On a class of physically important integrable equations”, Phys. D, 87 (1995), 145–150 | DOI
[15] Fu W., Nijhoff F.W., “On reductions of the discrete Kadomtsev–Petviashvili-type equations”, J. Phys. A, 50 (2017), 505203, 21 pp., arXiv: 1705.04819 | DOI
[16] Fu Y., Gui G., Liu Y., Qu C., “On the Cauchy problem for the integrable modified Camassa–Holm equation with cubic nonlinearity”, J. Differential Equations, 255 (2013), 1905–1938, arXiv: 1108.5368 | DOI
[17] Fuchssteiner B., “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation”, Phys. D, 95 (1996), 229–243 | DOI
[18] Fuchssteiner B., Fokas A.S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI
[19] Gao Y., “On conservative sticky peakons to the modified Camassa–Holm equation”, J. Differential Equations, 365 (2023), 486–520, arXiv: 2211.03245 | DOI
[20] Gao Y., Li L., Liu J.-G., “A dispersive regularization for the modified Camassa–Holm equation”, SIAM J. Math. Anal., 50 (2018), 2807–2838, arXiv: 1707.06377 | DOI
[21] Gao Y., Li L., Liu J.-G., “Patched peakon weak solutions of the modified Camassa–Holm equation”, Phys. D, 390 (2019), 15–35, arXiv: 1703.07466 | DOI
[22] Gui G., Liu Y., Olver P.J., Qu C., “Wave-breaking and peakons for a modified Camassa–Holm equation”, Comm. Math. Phys., 319 (2013), 731–759 | DOI
[23] Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2016 | DOI
[24] Himonas A.A., Mantzavinos D., “The Cauchy problem for the Fokas–Olver–Rosenau–Qiao equation”, Nonlinear Anal., 95 (2014), 499–529 | DOI
[25] Hirota R., “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI
[26] Hou Y., Fan E., Qiao Z., “The algebro-geometric solutions for the Fokas–Olver–Rosenau–Qiao (FORQ) hierarchy”, J. Geom. Phys., 117 (2017), 105–133 | DOI
[27] Hu H., Yin W., Wu H., “Bilinear equations and new multi-soliton solution for the modified Camassa–Holm equation”, Appl. Math. Lett., 59 (2016), 18–23 | DOI
[28] Kang J., Liu X., Olver P.J., Qu C., “Liouville correspondence between the modified KdV hierarchy and its dual integrable hierarchy”, J. Nonlinear Sci., 26 (2016), 141–170 | DOI
[29] Li J., Liu Y., “Stability of solitary waves for the modified Camassa–Holm equation”, Ann. PDE, 7 (2021), 14, 35 pp. | DOI
[30] Liu X., Liu Y., Qu C., “Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation”, Adv. Math., 255 (2014), 1–37 | DOI
[31] Liu Y., Olver P.J., Qu C., Zhang S., “On the blow-up of solutions to the integrable modified Camassa–Holm equation”, Anal. Appl. (Singap.), 12 (2014), 355–368 | DOI
[32] Luo Z., Qiao Z., Yin Z., “On the Cauchy problem for a modified Camassa–Holm equation”, Monatsh. Math., 193 (2020), 857–877 | DOI
[33] Ma R., Zhang Y., Xiong N., Feng B.-F., “Short wave limit of the Novikov equation and its integrable semi-discretizations”, J. Phys. A, 54 (2021), 495701, 17 pp. | DOI
[34] Matsuno Y., “Bäcklund transformation and smooth multisoliton solutions for a modified Camassa–Holm equation with cubic nonlinearity”, J. Math. Phys., 54 (2013), 051504, 14 pp., arXiv: 1302.0107 | DOI
[35] Matsuno Y., “Smooth and singular multisoliton solutions of a modified Camassa–Holm equation with cubic nonlinearity and linear dispersion”, J. Phys. A, 47 (2014), 125203, 25 pp., arXiv: 1310.4011 | DOI
[36] Mikhailov A.V., “Integrability of the two-dimensional Thirring model”, JETP Lett., 23 (1976), 320–323
[37] Miwa T., “On Hirota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 9–12 | DOI
[38] Ohta Y., Hirota R., Tsujimoto S., Imai T., “Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy”, J. Phys. Soc. Japan, 62 (1993), 1872–1886 | DOI
[39] Ohta Y., Maruno K., Feng B.-F., “An integrable semi-discretization of the Camassa–Holm equation and its determinant solution”, J. Phys. A, 41 (2008), 355205, 30 pp., arXiv: 0805.2843 | DOI
[40] Olver P.J., Rosenau P., “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53 (1996), 1900–1906 | DOI
[41] Qiao Z., “A new integrable equation with cuspons and W/M-shape-peaks solitons”, J. Math. Phys., 47 (2006), 112701, 9 pp. | DOI
[42] Qiao Z., Li X., An integrable equation with nonsmooth solitons,, Theoret. and Math. Phys., 167 (2011), 584–589 | DOI
[43] Qu C., Fu Y., Liu Y., “Well-posedness, wave breaking and peakons for a modified $\mu$-Camassa–Holm equation”, J. Funct. Anal., 266 (2014), 433–477 | DOI
[44] Sheng H.-H., Feng B.-F., Yu G.-F., “A generalized sine-Gordon equation: reductions and integrable discretizations”, J. Nonlinear Sci., 34 (2024), 55, 53 pp. | DOI
[45] Sheng H.-H., Yu G.-F., Feng B.-F., “An integrable semi-discretization of the modified Camassa–Holm equation with linear dispersion term”, Stud. Appl. Math., 149 (2022), 230–265, arXiv: 2110.15876 | DOI
[46] Song J., Qu C., Qiao Z., “A new integrable two-component system with cubic nonlinearity”, J. Math. Phys., 52 (2011), 013503, 9 pp. | DOI
[47] Tang H., Liu Z., “Well-posedness of the modified Camassa–Holm equation in Besov spaces”, Z. Angew. Math. Phys., 66 (2015), 1559–1580 | DOI
[48] Thirring W.E., “A soluble relativistic field theory”, Ann. Physics, 3 (1958), 91–112 | DOI
[49] Wang G., Liu Q.P., Mao H., “The modified Camassa–Holm equation: Bäcklund transformation and nonlinear superposition formula”, J. Phys. A, 53 (2020), 294003, 15 pp. | DOI
[50] Xia B., Zhou R., Qiao Z., “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation”, J. Math. Phys., 57 (2016), 103502, 12 pp., arXiv: 1506.08639 | DOI
[51] Xu J., Fan E., Long-time asyptotics behavior for the integrable modified Camassa–Holm equation with cubic nonlinearity, arXiv: 1911.12554
[52] Yang Y., Fan E., “On the long-time asymptotics of the modified Camassa–Holm equation in space-time solitonic regions”, Adv. Math., 402 (2022), 108340, 78 pp. | DOI
[53] Yu G.-F., Xu Z.-W., “Dynamics of a differential-difference integrable $(2+1)$-dimensional system”, Phys. Rev. E, 91 (2015), 062902, 10 pp. | DOI