A Pseudodifferential Analytic Perspective on Getzler's Rescaling
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inspired by Gilkey's invariance theory, Getzler's rescaling method and Scott's approach to the index via Wodzicki residues, we give a localisation formula for the $\mathbb{Z}_2$-graded Wodzicki residue of the logarithm of a class of differential operators acting on sections of a spinor bundle over an even-dimensional manifold. This formula is expressed in terms of another local density built from the symbol of the logarithm of a limit of rescaled differential operators acting on differential forms. When applied to complex powers of the square of a Dirac operator, it amounts to expressing the index of a Dirac operator in terms of a local density involving the logarithm of the Getzler rescaled limit of its square.
Keywords: index, Dirac operator, spinor bundle.
Mots-clés : Wodzicki residue
@article{SIGMA_2024_20_a9,
     author = {Georges Habib and Sylvie Paycha},
     title = {A {Pseudodifferential} {Analytic} {Perspective} on {Getzler's} {Rescaling}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a9/}
}
TY  - JOUR
AU  - Georges Habib
AU  - Sylvie Paycha
TI  - A Pseudodifferential Analytic Perspective on Getzler's Rescaling
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a9/
LA  - en
ID  - SIGMA_2024_20_a9
ER  - 
%0 Journal Article
%A Georges Habib
%A Sylvie Paycha
%T A Pseudodifferential Analytic Perspective on Getzler's Rescaling
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a9/
%G en
%F SIGMA_2024_20_a9
Georges Habib; Sylvie Paycha. A Pseudodifferential Analytic Perspective on Getzler's Rescaling. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a9/

[1] Ammann B., Grosjean J.F., Humbert E., Morel B., “A spinorial analogue of Aubin's inequality”, Math. Z., 260 (2008), 127–151, arXiv: math.DG/0308107 | DOI | MR | Zbl

[2] Atiyah M., Bott R., Patodi V.K., “On the heat equation and the index theorem”, Invent. Math., 19 (1973), 279–330 | DOI | MR | Zbl

[3] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren Text Ed., Springer, Berlin, 2004 | MR | Zbl

[4] Bourguignon J.-P., Hijazi O., Milhorat J.-L., Moroianu A., Moroianu S., A spinorial approach to Riemannian and conformal geometry, EMS Monogr. Math., European Mathematical Society (EMS), Zürich, 2015 | DOI | MR | Zbl

[5] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[6] Debord C., Skandalis G., “Adiabatic groupoid, crossed product by $\mathbb{R}_+^\ast$ and pseudodifferential calculus”, Adv. Math., 257 (2014), 66–91, arXiv: 1307.6320 | DOI | MR | Zbl

[7] Debord C., Skandalis G., “Blow-up constructions for Lie groupoids and a Boutet de Monvel type calculus”, Münster J. Math., 14 (2021), 1–40, arXiv: 1705.09588 | DOI | MR | Zbl

[8] Epstein D.B.A., “Natural tensors on Riemannian manifolds”, J. Differential Geometry, 10 (1975), 631–645 | DOI | MR | Zbl

[9] Freed D., Lectures on Dirac operators, Unpublished notes, 1987 https://web.ma.utexas.edu/users/dafr/DiracNotes.pdf

[10] Getzler E., “A short proof of the local Atiyah–Singer index theorem”, Topology, 25 (1986), 111–117 | DOI | MR | Zbl

[11] Gilkey P.B., Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1995 | DOI | MR | Zbl

[12] Higson N., “The tangent groupoid and the index theorem”, Quanta of Maths, Clay Math. Proc., 11, American Mathematical Society, Providence, RI, 2010, 241–256 | MR | Zbl

[13] Higson N., Yi Z., “Spinors and the tangent groupoid”, Doc. Math., 24 (2019), 1677–1720, arXiv: 1902.08351 | DOI | MR | Zbl

[14] Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[15] Mickelsson J., Paycha S., “The logarithmic residue density of a generalized Laplacian”, J. Aust. Math. Soc., 90 (2011), 53–80, arXiv: 1008.3039 | DOI | MR | Zbl

[16] Scott S., Traces and determinants of pseudodifferential operators, Oxford Math. Monogr., Oxford University Press, Oxford, 2010 | DOI | MR | Zbl

[17] Shubin M.A., Pseudo-differential operators and spectral theory, Springer, Berlin, 2001 | DOI | MR

[18] van Erp E., Yuncken R., “A groupoid approach to pseudodifferential calculi”, J. Reine Angew. Math., 756 (2019), 151–182, arXiv: 1511.01041 | DOI | MR | Zbl

[19] Wodzicki M., “Noncommutative residue. I Fundamentals”, $K$-theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 320–399 | DOI | MR