Mots-clés : Wodzicki residue
@article{SIGMA_2024_20_a9,
author = {Georges Habib and Sylvie Paycha},
title = {A {Pseudodifferential} {Analytic} {Perspective} on {Getzler's} {Rescaling}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a9/}
}
Georges Habib; Sylvie Paycha. A Pseudodifferential Analytic Perspective on Getzler's Rescaling. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a9/
[1] Ammann B., Grosjean J.F., Humbert E., Morel B., “A spinorial analogue of Aubin's inequality”, Math. Z., 260 (2008), 127–151, arXiv: math.DG/0308107 | DOI | MR | Zbl
[2] Atiyah M., Bott R., Patodi V.K., “On the heat equation and the index theorem”, Invent. Math., 19 (1973), 279–330 | DOI | MR | Zbl
[3] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren Text Ed., Springer, Berlin, 2004 | MR | Zbl
[4] Bourguignon J.-P., Hijazi O., Milhorat J.-L., Moroianu A., Moroianu S., A spinorial approach to Riemannian and conformal geometry, EMS Monogr. Math., European Mathematical Society (EMS), Zürich, 2015 | DOI | MR | Zbl
[5] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[6] Debord C., Skandalis G., “Adiabatic groupoid, crossed product by $\mathbb{R}_+^\ast$ and pseudodifferential calculus”, Adv. Math., 257 (2014), 66–91, arXiv: 1307.6320 | DOI | MR | Zbl
[7] Debord C., Skandalis G., “Blow-up constructions for Lie groupoids and a Boutet de Monvel type calculus”, Münster J. Math., 14 (2021), 1–40, arXiv: 1705.09588 | DOI | MR | Zbl
[8] Epstein D.B.A., “Natural tensors on Riemannian manifolds”, J. Differential Geometry, 10 (1975), 631–645 | DOI | MR | Zbl
[9] Freed D., Lectures on Dirac operators, Unpublished notes, 1987 https://web.ma.utexas.edu/users/dafr/DiracNotes.pdf
[10] Getzler E., “A short proof of the local Atiyah–Singer index theorem”, Topology, 25 (1986), 111–117 | DOI | MR | Zbl
[11] Gilkey P.B., Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1995 | DOI | MR | Zbl
[12] Higson N., “The tangent groupoid and the index theorem”, Quanta of Maths, Clay Math. Proc., 11, American Mathematical Society, Providence, RI, 2010, 241–256 | MR | Zbl
[13] Higson N., Yi Z., “Spinors and the tangent groupoid”, Doc. Math., 24 (2019), 1677–1720, arXiv: 1902.08351 | DOI | MR | Zbl
[14] Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl
[15] Mickelsson J., Paycha S., “The logarithmic residue density of a generalized Laplacian”, J. Aust. Math. Soc., 90 (2011), 53–80, arXiv: 1008.3039 | DOI | MR | Zbl
[16] Scott S., Traces and determinants of pseudodifferential operators, Oxford Math. Monogr., Oxford University Press, Oxford, 2010 | DOI | MR | Zbl
[17] Shubin M.A., Pseudo-differential operators and spectral theory, Springer, Berlin, 2001 | DOI | MR
[18] van Erp E., Yuncken R., “A groupoid approach to pseudodifferential calculi”, J. Reine Angew. Math., 756 (2019), 151–182, arXiv: 1511.01041 | DOI | MR | Zbl
[19] Wodzicki M., “Noncommutative residue. I Fundamentals”, $K$-theory, Arithmetic and Geometry (Moscow, 1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, 1987, 320–399 | DOI | MR