Mots-clés : superconformal normal coordinates
@article{SIGMA_2024_20_a89,
author = {Dimitri P. Skliros},
title = {Moving {NS} {Punctures} on {Super} {Spheres}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a89/}
}
Dimitri P. Skliros. Moving NS Punctures on Super Spheres. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a89/
[1] Ahmadain A., Wall A.C., “Off-shell strings I: S-matrix and action”, SciPost Phys., 17 (2024), 005, 61 pp., arXiv: 2211.08607 | DOI
[2] Ahmadain A., Wall A.C., “Off-shell strings II: Black hole entropy”, SciPost Phys., 17 (2024), 006, 37 pp., arXiv: 2211.16448 | DOI
[3] Angelantonj C., Florakis I., Pioline B., “A new look at one-loop integrals in string theory”, Commun. Number Theory Phys., 6 (2012), 159–201, arXiv: 1110.5318 | DOI
[4] Anninos D., Bautista T., Mühlmann B., “The two-sphere partition function in two-dimensional quantum gravity”, J. High Energy Phys., 2021:9 (2021), 116, 29 pp., arXiv: 2106.01665 | DOI
[5] Atick J.J., Moore G., Sen A., “Some global issues in string perturbation theory”, Nuclear Phys. B, 308 (1988), 1–101 | DOI
[6] Baranov M.A., Frolov I.V., Shvarts A.S., “Geometry of two-dimensional superconformal field theories”, Theoret. and Math. Phys., 70 (1987), 64–72 | DOI
[7] Belavin A.A., Knizhnik V.G., “Algebraic geometry and the geometry of quantum strings”, Phys. Lett. B, 168 (1986), 201–206 | DOI
[8] Bergman O., Zwiebach B., “The dilaton theorem and closed string backgrounds”, Nuclear Phys. B, 441 (1995), 76–118, arXiv: hep-th/9411047 | DOI
[9] Berkovits N., D'Hoker E., Green M.B., Johansson H., Schlotterer O., Snowmass white paper: string perturbation theory, arXiv: 2203.09099
[10] Bern Z., Carrasco J.J., Chiodaroli M., Johansson H., Roiban R., “The duality between color and kinematics and its applications”, J. Phys. A, 57 (2024), 333002, 179 pp., arXiv: 1909.01358 | DOI
[11] Crane L., Rabin J.M., “Super Riemann surfaces: uniformization and Teichmüller theory”, Comm. Math. Phys., 113 (1988), 601–623 | DOI
[12] de Lacroix C., Erbin H., Pratap Kashyap S., Sen A., Verma M., “Closed superstring field theory and its applications”, Internat. J. Modern Phys. A, 32 (2017), 1730021, 115 pp., arXiv: 1703.06410 | DOI
[13] D'Hoker E., Mafra C.R., Pioline B., Schlotterer O., “Two-loop superstring five-point amplitudes. Part I Construction via chiral splitting and pure spinors”, J. High Energy Phys., 2020:8 (2020), 135, 77 pp., arXiv: 2006.05270 | DOI
[14] D'Hoker E., Phong D.H., “The geometry of string perturbation theory”, Rev. Modern Phys., 60 (1988), 917–1065 | DOI
[15] D'Hoker E., Phong D.H., “Conformal scalar fields and chiral splitting on super Riemann surfaces”, Comm. Math. Phys., 125 (1989), 469–513 | DOI
[16] D'Hoker E., Phong D.H., “Two-loop superstrings. I Main formulas”, Phys. Lett. B, 529 (2002), 241–255, arXiv: hep-th/0110247 | DOI
[17] D'Hoker E., Phong D.H., “Higher order deformations of complex structures”, SIGMA, 11 (2015), 047, 14 pp., arXiv: 1502.03673 | DOI
[18] Dijkgraaf R., Witten E., “Developments in topological gravity”, Internat. J. Modern Phys. A, 33 (2018), 1830029, 63 pp. | DOI
[19] Distler J., Nelson P., “Topological couplings and contact terms in 2d field theory”, Comm. Math. Phys., 138 (1991), 273–290 | DOI
[20] Donagi R., Witten E., “Supermoduli space is not projected”, String-Math 2012, Proc. Sympos. Pure Math., 90, American Mathematical Society, Providence, RI, 2015, 19–71, arXiv: 1304.7798 | DOI
[21] Doyle M.D., The operator formalism and contact terms in string theory, Ph.D. Thesis, Princeton University, 1992
[22] Eberhardt L., “Partition functions of the tensionless string”, J. High Energy Phys., 2021:3 (2021), 176, 43 pp., arXiv: 2008.07533 | DOI
[23] Eberhardt L., Pal S., “The disk partition function in string theory”, J. High Energy Phys., 2021:3 (2021), 026, 28 pp., arXiv: 2105.08726 | DOI
[24] Erbin H., Maldacena J., Skliros D., “Two-point string amplitudes”, J. High Energy Phys., 2019:7 (2019), 139, 6 pp., arXiv: 1906.06051 | DOI
[25] Erler T., “The closed string field theory action vanishes”, J. High Energy Phys., 2022:5 (2022), 055, 8 pp., arXiv: 2204.12863 | DOI
[26] Erler T., Konopka S., “Vertical integration from the large Hilbert space”, J. High Energy Phys., 2017:12 (2017), 112, 36 pp., arXiv: 1710.07232 | DOI
[27] Fischler W., Susskind L., “Dilaton tadpoles, string condensates and scale invariance”, Phys. Lett. B, 171 (1986), 383–389 | DOI
[28] Fischler W., Susskind L., “Dilaton tadpoles, string condensates and scale invariance. II”, Phys. Lett. B, 173 (1986), 262–264 | DOI
[29] Friedan D., “Notes on string theory and two-dimensional conformal field theory”, Workshop on Unified String Theories (Santa Barbara, Calif., 1985), World Scientific Publishing, Singapore, 1986, 162–213
[30] Friedan D., Martinec E., Shenker S., “Conformal invariance, supersymmetry and string theory”, Nuclear Phys. B, 271 (1986), 93–165 | DOI
[31] Geyer Y., Monteiro R., Stark-Muchão R., “Superstring loop amplitudes from the field theory limit”, Phys. Rev. Lett., 127 (2021), 211603, 9 pp., arXiv: 2106.03968 | DOI
[32] Gross D.J., Harvey J.A., Martinec E., Rohm R., “Heterotic string theory. I The free heterotic string”, Nuclear Phys. B, 256 (1985), 253–284 | DOI
[33] Gross D.J., Harvey J.A., Martinec E., Rohm R., “Heterotic string theory. II The interacting heterotic string”, Nuclear Phys. B, 267 (1986), 75–124 | DOI
[34] Kawai H., Lewellen D.C., Tye S.H.H., “A relation between tree amplitudes of closed and open strings”, Nuclear Phys. B, 269 (1986), 1–23 | DOI
[35] La H., Nelson P., “Effective field equations for fermionic strings”, Nuclear Phys. B, 332 (1990), 83–130 | DOI
[36] Mahajan R., Stanford D., Yan C., “Sphere and disk partition functions in Liouville and in matrix integrals”, J. High Energy Phys., 2022:7 (2022), 132, 26 pp., arXiv: 2107.01172 | DOI
[37] Mirzakhani M., “Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces”, Invent. Math., 167 (2007), 179–222 | DOI
[38] Mirzakhani M., “Weil–Petersson volumes and intersection theory on the moduli space of curves”, J. Amer. Math. Soc., 20 (2007), 1–23 | DOI
[39] Mizera S., “Combinatorics and topology of Kawai–Lewellen–Tye relations”, J. High Energy Phys., 2017:8 (2017), 097, 53 pp., arXiv: 1706.08527 | DOI
[40] Nelson P., “Covariant insertion of general vertex operators”, Phys. Rev. Lett., 62 (1989), 993–996 | DOI
[41] Nelson P., “Lectures on supermanifolds and strings”, Particles, Strings and Supernovae (Providence, RI, 1988), v. 1, 2, World Scientific Publishing, Teaneck, NJ, 1989, 997–1073
[42] Nelson P., “Operator formalism and holomorphic factorization in supermoduli”, Superstrings '88 (Trieste, 1988), World Scientific Publishing, Teaneck, NJ, 1989, 276–287
[43] O'Brien K.H., Tan C.I., “Modular invariance of thermopartition function and global phase structure of heterotic string”, Phys. Rev. D, 36 (1987), 1184–1192 | DOI
[44] Polchinski J., “Vertex operators in the Polyakov path integral”, Nuclear Phys. B, 289 (1987), 465–483 | DOI
[45] Polchinski J., “Factorization of bosonic string amplitudes”, Nuclear Phys. B, 307 (1988), 61–92 | DOI
[46] Polchinski J., String theory, v. I, Cambridge Monogr. Math. Phys., An introduction to the bosonic string, Cambridge University Press, Cambridge, 1998 | DOI
[47] Polchinski J., String theory, v. II, Cambridge Monogr. Math. Phys., Superstring theory and beyond, Cambridge University Press, Cambridge, 1998 | DOI
[48] Seiberg N., Witten E., “Spin structures in string theory”, Nuclear Phys. B, 276 (1986), 272–290 | DOI
[49] Sen A., “Off-shell amplitudes in superstring theory”, Fortschr. Phys., 63 (2015), 149–188, arXiv: 1408.0571 | DOI
[50] Sen A., Witten E., “Filling the gaps with PCO's”, J. High Energy Phys., 2015:9 (2015), 004, 34 pp., arXiv: 1504.00609 | DOI
[51] Sen A., Zwiebach B., String field theory: a review, arXiv: 2405.19421
[52] Shenker S.H., “The strength of nonperturbative effects in string theory”, Random Surfaces and Quantum Gravity, NATO Adv. Sci. Inst. Ser. B: Phys., 262, Plenum, New York, 1991, 191–200 | DOI
[53] Skliros D., Lüst D., “Handle operators in string theory”, Phys. Rep., 897 (2021), 1–180, arXiv: 1912.01055 | DOI
[54] Skliros D.P., Copeland E.J., Saffin P.M., “Highly excited strings I: generating function”, Nuclear Phys. B, 916 (2017), 143–207, arXiv: 1611.06498 | DOI
[55] Stieberger S., A Relation between one-loop amplitudes of closed and open strings (one-loop KLT relation), arXiv: 2212.06816
[56] Stieberger S., “One-loop double copy relation in string theory”, Phys. Rev. Lett., 132 (2024), 191602, 8 pp., arXiv: 2310.07755 | DOI
[57] Tseytlin A.A., “On the “macroscopic string” approximation in string theory”, Phys. Lett. B, 251 (1990), 530–534 | DOI
[58] Verlinde E., Verlinde H., “Multiloop calculations in covariant superstring theory”, Phys. Lett. B, 192 (1987), 95–102 | DOI
[59] Verlinde H.L., Path-integral formulation of supersymmetric string theory, Ph.D. Thesis, Rijksuniversiteit Utrecht, Netherlands, 1988 https://inis.iaea.org/search/search.aspx?orig_q=RN:20024923
[60] Wang C., Yin X., “On the equivalence between SRS and PCO formulations of superstring perturbation theory”, J. High Energy Phys., 2023:3 (2023), 139, 26 pp., arXiv: 2205.01106 | DOI
[61] Witten E., “The Feynman $i\epsilon$ in string theory”, J. High Energy Phys., 2015:4 (2015), 055, 24 pp., arXiv: 1307.5124 | DOI
[62] Witten E., “Notes on super Riemann surfaces and their moduli”, Pure Appl. Math. Q., 15 (2019), 57–211, arXiv: 1209.2459 | DOI
[63] Witten E., “Notes on supermanifolds and integration”, Pure Appl. Math. Q., 15 (2019), 3–56, arXiv: 1209.2199 | DOI
[64] Witten E., “Perturbative superstring theory revisited”, Pure Appl. Math. Q, 15 (2019), 213–516, arXiv: 1209.5461v3 | DOI
[65] Zwiebach B., “Closed string field theory: quantum action and the Batalin–Vilkovisky master equation”, Nuclear Phys. B, 390 (1993), 33–152, arXiv: hep-th/9206084 | DOI