Proof of Two Multivariate $q$-Binomial Sums Arising in Gromov–Witten Theory
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024)
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove two multivariate $q$-binomial identities conjectured by Bousseau, Brini and van Garrel [Geom. Topol. 28 (2024), 393–496, arXiv:2011.08830] which give generating series for Gromov–Witten invariants of two specific log Calabi–Yau surfaces. The key identity in all the proofs is Jackson's $q$-analogue of the Pfaff–Saalschütz summation formula from the theory of basic hypergeometric series.
Keywords:
Looijenga pairs, Gromov–Witten invariants, basic hypergeometric series
Mots-clés : log Calabi–Yau surfaces, $q$-binomial coefficients, Pfaff–Saalschütz summation formula.
Mots-clés : log Calabi–Yau surfaces, $q$-binomial coefficients, Pfaff–Saalschütz summation formula.
@article{SIGMA_2024_20_a88,
author = {Christian Krattenthaler},
title = {Proof of {Two} {Multivariate} $q${-Binomial} {Sums} {Arising} in {Gromov{\textendash}Witten} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a88/}
}
Christian Krattenthaler. Proof of Two Multivariate $q$-Binomial Sums Arising in Gromov–Witten Theory. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a88/
[1] Bousseau P., Brini A., van Garrel M., “Stable maps to Looijenga pairs”, Geom. Topol., 28 (2024), 393–496, arXiv: 2011.08830 | DOI
[2] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia Math. Appl., 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI