On the Picard Group of the Moduli Space of Curves via $r$-Spin Structures
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we obtain explicit expressions for Pandharipande–Pixton–Zvonkine relations in the second rational cohomology of $\overline{\mathcal M}_{g,n}$ and comparing the result with Arbarello–Cornalba's theorem we prove Pixton's conjecture in this case.
Keywords: moduli space of curves, tautological relations, cohomological field theories.
@article{SIGMA_2024_20_a87,
     author = {Danil Gubarevich},
     title = {On the {Picard} {Group} of the {Moduli} {Space} of {Curves} via $r${-Spin} {Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a87/}
}
TY  - JOUR
AU  - Danil Gubarevich
TI  - On the Picard Group of the Moduli Space of Curves via $r$-Spin Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a87/
LA  - en
ID  - SIGMA_2024_20_a87
ER  - 
%0 Journal Article
%A Danil Gubarevich
%T On the Picard Group of the Moduli Space of Curves via $r$-Spin Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a87/
%G en
%F SIGMA_2024_20_a87
Danil Gubarevich. On the Picard Group of the Moduli Space of Curves via $r$-Spin Structures. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a87/

[1] Arbarello E., Cornalba M., “Calculating cohomology groups of moduli spaces of curves via algebraic geometry”, Inst. Hautes Études Sci. Publ. Math., 88 (1998), 97–127, arXiv: math.AG/9803001 | DOI

[2] Kock J., “Frobenius algebras and 2D topological quantum field theories”, London Math. Soc. Stud. Texts, 59, Cambridge University Press, Cambridge, 2004 | DOI

[3] Mumford D., “Towards an enumerative geometry of the moduli space of curves”, Arithmetic and Geometry, v. II, Progr. Math., 36, Birkhäuser, Boston, MA, 1983, 271–328 | DOI

[4] Pandharipande R., “Cohomological field theory calculations”, Proceedings of the International Congress of Mathematicians (Rio de Janeiro, 2018), v. I, Plenary lectures, World Scientific Publishing, Hackensack, NJ, 2018, 869–898, arXiv: 1712.02528 | DOI

[5] Pandharipande R., Pixton A., “Relations in the tautological ring of the moduli space of curves”, Pure Appl. Math. Q, 17 (2021), 717–771, arXiv: 1301.4561 | DOI

[6] Pandharipande R., Pixton A., Zvonkine D., “Relations on $\overline{\mathcal M}_{g,n}$ via $3$-spin structures”, J. Amer. Math. Soc., 28 (2015), 279–309, arXiv: 1303.1043 | DOI

[7] Pandharipande R., Pixton A., Zvonkine D., “Tautological relations via $r$-spin structures”, J. Algebraic Geom., 28 (2019), 439–496, arXiv: 1607.00978 | DOI

[8] Pixton A., Conjectural relations in the tautological ring of $\overline{M}_{g,n}$, arXiv: 1207.1918

[9] Polishchuk A., “Witten's top Chern class on the moduli space of higher spin curves”, Frobenius Manifolds, Aspects Math., E36, Friedr. Vieweg Sohn, Wiesbaden, 2004, 253–264, arXiv: math.AG/0208112 | DOI

[10] Polishchuk A., Vaintrob A., “Algebraic construction of Witten's top Chern class”, Advances in Algebraic Geometry Motivated by Physics (Lowell, MA, 2000), Contemp. Math., 276, American Mathematical Society, Providence, RI, 2001, 229–249, arXiv: math.AG/0011032 | DOI

[11] Teleman C., “The structure of 2D semi-simple field theories”, Invent. Math., 188 (2012), 525–588, arXiv: 0712.0160 | DOI

[12] Witten E., “Algebraic geometry associated with matrix models of two-dimensional gravity”, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 235–269

[13] Zvonkine D., “An introduction to moduli spaces of curves and their intersection theory”, Handbook of Teichmüller Theory, v. III, IRMA Lect. Math. Theor. Phys., 17, European Mathematical Society (EMS), Zürich, 2012, 667–716 | DOI