Algebraic Complete Integrability of the $a_4^{(2)}$ Toda Lattice
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this work is focused on the investigation of the algebraic complete integrability of the Toda lattice associated with the twisted affine Lie algebra $a_4^{(2)}$. First, we prove that the generic fiber of the momentum map for this system is an affine part of an abelian surface. Second, we show that the flows of integrable vector fields on this surface are linear. Finally, using the formal Laurent solutions of the system, we provide a detailed geometric description of these abelian surfaces and the divisor at infinity.
Keywords: Toda lattice, integrable system, algebraic integrability, abelian surface.
@article{SIGMA_2024_20_a86,
     author = {Bruce Lionnel Lietap Ndi and Djagwa Dehainsala and Joseph Dongho},
     title = {Algebraic {Complete} {Integrability} of the $a_4^{(2)}$ {Toda} {Lattice}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a86/}
}
TY  - JOUR
AU  - Bruce Lionnel Lietap Ndi
AU  - Djagwa Dehainsala
AU  - Joseph Dongho
TI  - Algebraic Complete Integrability of the $a_4^{(2)}$ Toda Lattice
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a86/
LA  - en
ID  - SIGMA_2024_20_a86
ER  - 
%0 Journal Article
%A Bruce Lionnel Lietap Ndi
%A Djagwa Dehainsala
%A Joseph Dongho
%T Algebraic Complete Integrability of the $a_4^{(2)}$ Toda Lattice
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a86/
%G en
%F SIGMA_2024_20_a86
Bruce Lionnel Lietap Ndi; Djagwa Dehainsala; Joseph Dongho. Algebraic Complete Integrability of the $a_4^{(2)}$ Toda Lattice. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a86/

[1] Adler M., van Moerbeke P., “Linearization of Hamiltonian systems, Jacobi varieties and representation theory”, Adv. Math., 38 (1980), 318–379 | DOI

[2] Adler M., van Moerbeke P., “The complex geometry of the Kowalewski–Painlevé analysis”, Invent. Math., 97 (1989), 3–51 | DOI

[3] Adler M., van Moerbeke P., “The Toda lattice, Dynkin diagrams, singularities and abelian varieties”, Invent. Math., 103 (1991), 223–278 | DOI

[4] Adler M., van Moerbeke P., Vanhaecke P., “Algebraic integrability, Painlevé geometry and Lie algebras”, Ergeb. Math. Grenzgeb. (3), 47 (2004), Springer, Berlin | DOI

[5] Bogoyavlensky O.I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI

[6] Dehainsala D., Sur l'intégrabilité algébrique des réseaux de Toda: cas particuliers des réseaux $c_2^{(1)}$ et $d_3^{(2)}$, Ph.D. Thesis, Université de Poitiers, 2008

[7] Dehainsala D., “Algebraic complete integrability of the $\mathfrak c_2^{(1)}$ Toda lattice”, J. Geom. Phys., 135 (2019), 80–97 | DOI

[8] Flaschka H., “The Toda lattice. II. Existence of integrals”, Phys. Rev. B, 9 (1974), 1924–1925 | DOI

[9] Haine L., “Geodesic flow on ${\rm SO}(4)$ and abelian surfaces”, Math. Ann., 263 (1983), 435–472 | DOI

[10] Hénon M., “Integrals of the Toda lattice”, Phys. Rev. B, 9 (1974), 1921–1923 | DOI

[11] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, The Kowalevski Property (Leeds, 2000), CRM Proc. Lecture Notes, 32, American Mathematical Society, Providence, RI, 2002, 315–372 | DOI

[12] Toda M., “One-dimensional dual transformation”, J. Phys. Soc. Japan, 20 (1965), 2095A | DOI

[13] Toda M., “One-dimensional dual transformation”, Prog. Theor. Phys. Suppl., 36 (1966), 113–119 | DOI