@article{SIGMA_2024_20_a86,
author = {Bruce Lionnel Lietap Ndi and Djagwa Dehainsala and Joseph Dongho},
title = {Algebraic {Complete} {Integrability} of the $a_4^{(2)}$ {Toda} {Lattice}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a86/}
}
TY - JOUR
AU - Bruce Lionnel Lietap Ndi
AU - Djagwa Dehainsala
AU - Joseph Dongho
TI - Algebraic Complete Integrability of the $a_4^{(2)}$ Toda Lattice
JO - Symmetry, integrability and geometry: methods and applications
PY - 2024
VL - 20
UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a86/
LA - en
ID - SIGMA_2024_20_a86
ER -
%0 Journal Article
%A Bruce Lionnel Lietap Ndi
%A Djagwa Dehainsala
%A Joseph Dongho
%T Algebraic Complete Integrability of the $a_4^{(2)}$ Toda Lattice
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a86/
%G en
%F SIGMA_2024_20_a86
Bruce Lionnel Lietap Ndi; Djagwa Dehainsala; Joseph Dongho. Algebraic Complete Integrability of the $a_4^{(2)}$ Toda Lattice. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a86/
[1] Adler M., van Moerbeke P., “Linearization of Hamiltonian systems, Jacobi varieties and representation theory”, Adv. Math., 38 (1980), 318–379 | DOI
[2] Adler M., van Moerbeke P., “The complex geometry of the Kowalewski–Painlevé analysis”, Invent. Math., 97 (1989), 3–51 | DOI
[3] Adler M., van Moerbeke P., “The Toda lattice, Dynkin diagrams, singularities and abelian varieties”, Invent. Math., 103 (1991), 223–278 | DOI
[4] Adler M., van Moerbeke P., Vanhaecke P., “Algebraic integrability, Painlevé geometry and Lie algebras”, Ergeb. Math. Grenzgeb. (3), 47 (2004), Springer, Berlin | DOI
[5] Bogoyavlensky O.I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI
[6] Dehainsala D., Sur l'intégrabilité algébrique des réseaux de Toda: cas particuliers des réseaux $c_2^{(1)}$ et $d_3^{(2)}$, Ph.D. Thesis, Université de Poitiers, 2008
[7] Dehainsala D., “Algebraic complete integrability of the $\mathfrak c_2^{(1)}$ Toda lattice”, J. Geom. Phys., 135 (2019), 80–97 | DOI
[8] Flaschka H., “The Toda lattice. II. Existence of integrals”, Phys. Rev. B, 9 (1974), 1924–1925 | DOI
[9] Haine L., “Geodesic flow on ${\rm SO}(4)$ and abelian surfaces”, Math. Ann., 263 (1983), 435–472 | DOI
[10] Hénon M., “Integrals of the Toda lattice”, Phys. Rev. B, 9 (1974), 1921–1923 | DOI
[11] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, The Kowalevski Property (Leeds, 2000), CRM Proc. Lecture Notes, 32, American Mathematical Society, Providence, RI, 2002, 315–372 | DOI
[12] Toda M., “One-dimensional dual transformation”, J. Phys. Soc. Japan, 20 (1965), 2095A | DOI
[13] Toda M., “One-dimensional dual transformation”, Prog. Theor. Phys. Suppl., 36 (1966), 113–119 | DOI