@article{SIGMA_2024_20_a85,
author = {Zhi-Guo Liu},
title = {On a {Transformation} of {Triple} $q${-Series} and {Rogers{\textendash}Hecke} {Type} {Series}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a85/}
}
Zhi-Guo Liu. On a Transformation of Triple $q$-Series and Rogers–Hecke Type Series. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a85/
[1] Andrews G.E., “Enumerative proofs of certain $q$-identities”, Glasgow Math. J., 8 (1967), 33–40 | DOI
[2] Andrews G.E., “Applications of basic hypergeometric functions”, SIAM Rev., 16 (1974), 441–484 | DOI
[3] Andrews G.E., “The fifth and seventh order mock theta functions”, Trans. Amer. Math. Soc., 293 (1986), 113–134 | DOI
[4] Andrews G.E., “$q$-orthogonal polynomials, Rogers–Ramanujan identities, and mock theta functions”, Proc. Steklov Inst. Math., 276 (2012), 21–32 | DOI
[5] Andrews G.E., Askey R., Roy R., Special functions, Encyclopedia Math. Appl., 71, Cambridge University Press, Cambridge, 1999 | DOI
[6] Andrews G.E., Berndt B.C., Ramanujan's lost notebook, v. I, Springer, New York, 2005 | DOI
[7] Andrews G.E., Dyson F.J., Hickerson D., “Partitions and indefinite quadratic forms”, Invent. Math., 91 (1988), 391–407 | DOI
[8] Aslan H., Ismail M.E.H., “A $q$-translation approach to Liu's calculus”, Ann. Comb., 23 (2019), 465–488 | DOI
[9] Chen D., Wang L., “Representations of mock theta functions”, Adv. Math., 365 (2020), 107037, 72 pp., arXiv: 1811.07686 | DOI
[10] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia Math. Appl., 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI
[11] Jackson F., “On $q$-functions and a certain difference operator”, Trans. Roy. Soc. Edin., 46 (1909), 253–281 | DOI
[12] Krammer D., “Sums of three squares and $q$-series”, J. Number Theory, 44 (1993), 244–254 | DOI
[13] Liu Z.-G., “An expansion formula for $q$-series and applications”, Ramanujan J., 6 (2002), 429–447 | DOI
[14] Liu Z.-G., “Some operator identities and $q$-series transformation formulas”, Discrete Math., 265 (2003), 119–139 | DOI
[15] Liu Z.-G., “An extension of the quintuple product identity and its applications”, Pacific J. Math., 246 (2010), 345–390 | DOI
[16] Liu Z.-G., “Two $q$-difference equations and $q$-operator identities”, J. Difference Equ. Appl., 16 (2010), 1293–1307 | DOI
[17] Liu Z.-G., “An extension of the non-terminating ${}_6\phi_5$ summation and the Askey–Wilson polynomials”, J. Difference Equ. Appl., 17 (2011), 1401–1411 | DOI
[18] Liu Z.-G., “A $q$-series expansion formula and the Askey–Wilson polynomials”, Ramanujan J., 30 (2013), 193–210 | DOI
[19] Liu Z.-G., “On the $q$-derivative and $q$-series expansions”, Int. J. Number Theory, 9 (2013), 2069–2089, arXiv: 1805.04618 | DOI
[20] Liu Z.-G., “On the $q$-partial differential equations and $q$-series”, The Legacy of Srinivasa Ramanujan, Ramanujan Math. Soc. Lect. Notes Ser., 20, Ramanujan Mathematical Society, Mysore, 2013, 213–250, arXiv: 1805.02132
[21] Liu Z.-G., “A $q$-extension of a partial differential equation and the Hahn polynomials”, Ramanujan J., 38 (2015), 481–501, arXiv: 1805.07292 | DOI
[22] Liu Z.-G., “On a system of $q$-partial differential equations with applications to $q$-series”, Analytic Number Theory, Modular Forms and $q$-hypergeometric Series, Springer Proc. Math. Stat., 221, Springer, Cham, 2017, 445–461, arXiv: 1709.06784 | DOI
[23] Liu Z.-G., “Askey–Wilson polynomials and a double $q$-series transformation formula with twelve parameters”, Proc. Amer. Math. Soc., 147 (2019), 2349–2363, arXiv: 1810.02918 | DOI
[24] Liu Z.-G., A universal identity for theta functions of degree eight and applications, Hardy-Ramanujan J., 43 (2020), 129–172, arXiv: 2104.14705 | DOI
[25] Liu Z.-G., “On the Askey–Wilson polynomials and a $q$-beta integral”, Proc. Amer. Math. Soc., 149 (2021), 4639–4648 | DOI
[26] Liu Z.-G., “A multiple $q$-exponential differential operational identity”, Acta Math. Sci. Ser. B (Engl. Ed.), 43 (2023), 2449–2470 | DOI
[27] Liu Z.-G., “A multiple $q$-translation formula and its implications”, Acta Math. Sin. (Engl. Ser.), 39 (2023), 2338–2363 | DOI
[28] Schendel L., “Zur Theorie der Functionen”, J. Reine Angew. Math., 84 (1878), 80–84 | DOI
[29] Shanks D., “A short proof of an identity of Euler”, Proc. Amer. Math. Soc., 2 (1951), 747–749 | DOI
[30] Shanks D., “Two theorems of Gauss”, Pacific J. Math., 8 (1958), 609–612 | DOI
[31] Wang C., Chern S., “Some $q$-transformation formulas and Hecke type identities”, Int. J. Number Theory, 15 (2019), 1349–1367 | DOI
[32] Wang L., Yee A.J., “Some Hecke–Rogers type identities”, Adv. Math., 349 (2019), 733–748 | DOI