Mots-clés : Racah algebra
@article{SIGMA_2024_20_a84,
author = {Sarah Post and S\'ebastien Bertrand},
title = {The {Racah} {Algebra} of {Rank} 2: {Properties,} {Symmetries} and {Representation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a84/}
}
TY - JOUR AU - Sarah Post AU - Sébastien Bertrand TI - The Racah Algebra of Rank 2: Properties, Symmetries and Representation JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a84/ LA - en ID - SIGMA_2024_20_a84 ER -
Sarah Post; Sébastien Bertrand. The Racah Algebra of Rank 2: Properties, Symmetries and Representation. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a84/
[1] Askey R., Wilson J., “A set of orthogonal polynomials that generalize the Racah coefficients or $6-j$ symbols”, SIAM J. Math. Anal., 10 (1979), 1008–1016 | DOI | MR | Zbl
[2] Bockting-Conrad S., Huang H.-W., “The universal enveloping algebra of $\mathfrak{sl}_2$ and the Racah algebra”, Comm. Algebra, 48 (2020), 1022–1040, arXiv: 1907.02135 | DOI | MR | Zbl
[3] Crampé N., Frappat L., Ragoucy E., “Representations of the rank two Racah algebra and orthogonal multivariate polynomials”, Linear Algebra Appl., 664 (2023), 165–215, arXiv: 2206.01031 | DOI | MR | Zbl
[4] Crampé N., Gaboriaud J., d'Andecy L.P., Vinet L., “Racah algebras, the centralizer $Z_n(\mathfrak {sl}_2)$ and its Hilbert–Poincaré series”, Ann. Henri Poincaré, 23 (2022), 2657–2682, arXiv: 2105.01086 | DOI | MR | Zbl
[5] De Bie H., Genest V.X., van de Vijver W., Vinet L., “A higher rank Racah algebra and the $\mathbb Z^n_2$ Laplace–Dunkl operator”, J. Phys. A, 51 (2018), 025203, 20 pp., arXiv: 1610.02638 | DOI | MR | Zbl
[6] De Bie H., Iliev P., van de Vijver W., Vinet L., “The Racah algebra: an overview and recent results”, Lie Groups, Number Theory, and Vertex Algebras, Contemp. Math., 768, American Mathematical Society, RI, 2021, 3–20, arXiv: 2001.11195 | DOI | MR | Zbl
[7] Genest V.X., Vinet L., Zhedanov A., “The equitable Racah algebra from three $\mathfrak{su}(1,1)$ algebras”, J. Phys. A, 47 (2014), 025203, 12 pp., arXiv: 1309.3540 | DOI | MR | Zbl
[8] Granovskii Ya.A., Zhedanov A.S., “Nature of the symmetry group of the $6j$-symbol”, Soviet Phys. JETP, 94 (1988), 1982–1985 | MR
[9] Granovskii Ya.I., Lutzenko I.M., Zhedanov A.S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR | Zbl
[10] Granovskii Ya.I., Zhedanov A.S., Hidden symmetry of the Racah and Clebsch–Gordan problems for the quantum algebra $\mathfrak{sl}_q(2)$, arXiv: hep-th/9304138 | MR
[11] Huang H.-W., Bockting-Conrad S., “Finite-dimensional irreducible modules of the Racah algebra at characteristic zero”, SIGMA, 16 (2020), 018, 17 pp., arXiv: 1910.11446 | DOI | MR | Zbl
[12] Huang H.-W., Bockting-Conrad S., “The Casimir elements of the Racah algebra”, J. Algebra Appl., 20 (2021), 2150135, 22 pp., arXiv: 1711.09574 | DOI | MR | Zbl
[13] Kirillov A.N., Reshetikhin N.Yu., “Representations of the algebra ${U}_q(\mathfrak{sl}(2))$, $q$-orthogonal polynomials and invariants of links”, Infinite-Dimensional Lie Algebras and Groups, Adv. Ser. Math. Phys., 7, World Scientific Publishing, Teaneck, NJ, 1989, 285–339 | MR
[14] Lévy-Leblond J.-M., Lévy-Nahas M., “Symmetrical coupling of three angular momenta”, J. Math. Phys., 6 (1965), 1372–1380 | DOI | MR | Zbl
[15] Louck J.D., “Recent progress toward a theory of tensor operators in the unitary groups”, Amer. J. Phys., 38 (1970), 3–42 | DOI | MR
[16] Maple 2019, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario
[17] Post S., “Racah polynomials and recoupling schemes of $\mathfrak{su}(1,1)$”, SIGMA, 11 (2015), 057, 17 pp., arXiv: 1504.03705 | DOI | MR | Zbl
[18] Racah G., “Theory of complex spectra. II”, Phys. Rev., 62 (1942), 9–10 | DOI
[19] Racah G., “Lectures on Lie groups”, Group Theoretical Concepts and Methods in Elementary Particle Physics, Quantum Physics and Its Applications, Gordon and Breach, New York, 1964, 1–36 | MR