Mots-clés : essential conformal transformations, Kähler metrics
@article{SIGMA_2024_20_a83,
author = {Vicente Cort\'es and Thomas Leistner},
title = {Compact {Locally} {Conformally} {Pseudo-K\"ahler} {Manifolds} with {Essential} {Conformal} {Transformations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a83/}
}
TY - JOUR AU - Vicente Cortés AU - Thomas Leistner TI - Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a83/ LA - en ID - SIGMA_2024_20_a83 ER -
%0 Journal Article %A Vicente Cortés %A Thomas Leistner %T Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a83/ %G en %F SIGMA_2024_20_a83
Vicente Cortés; Thomas Leistner. Compact Locally Conformally Pseudo-Kähler Manifolds with Essential Conformal Transformations. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a83/
[1] Alekseevski D., “Self-similar Lorentzian manifolds”, Ann. Global Anal. Geom., 3 (1985), 59–84 | DOI | MR | Zbl
[2] Alekseevskiĭ D.V., “Groups of conformal transformations of Riemannian spaces”, Math. USSR-Sb., 18 (1972), 285–301 | DOI | MR
[3] Cahen M., Kerbrat Y., “Transformations conformes des espaces symétriques pseudo-riemanniens”, C. R. Acad. Sci. Paris Sér. A-B, 285 (1977), A383–A385 | MR
[4] Ferrand J., “The action of conformal transformations on a Riemannian manifold”, Math. Ann., 304 (1996), 277–291 | DOI | MR | Zbl
[5] Frances C., “Sur les variétés lorentziennes dont le groupe conforme est essentiel”, Math. Ann., 332 (2005), 103–119 | DOI | MR | Zbl
[6] Frances C., “Essential conformal structures in Riemannian and Lorentzian geometry”, Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., European Mathematical Society (EMS), Zürich, 2008, 231–260 | DOI | MR | Zbl
[7] Frances C., “About pseudo-Riemannian Lichnerowicz conjecture”, Transform. Groups, 20 (2015), 1015–1022, arXiv: 1211.0635 | DOI | MR | Zbl
[8] Frances C., Melnick K., “The Lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds”, J. Reine Angew. Math., 803 (2023), 183–218, arXiv: 2108.07215 | DOI | MR | Zbl
[9] Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Interscience Tracts in Pure and Applied Mathematics, 15, Interscience Publishers John Wiley Sons, Inc., New York, 1969 | MR | Zbl
[10] Leistner T., Teisseire S., “Conformal transformations of Cahen–Wallach spaces”, Ann. Inst. Fourier (Grenoble) (to appear) , arXiv: 2201.12958
[11] Lelong-Ferrand J., “Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de A Lichnerowicz)”, Acad. Roy. Belg. Cl. Sci. Mém. Collect. 8$^{\rm o}$ (2), 39 (1971), 5, 44 pp. | MR | Zbl
[12] Melnick K., Pecastaing V., “The conformal group of a compact simply connected Lorentzian manifold”, J. Amer. Math. Soc., 35 (2022), 81–122, arXiv: 1911.06251 | DOI | MR | Zbl
[13] Moroianu A., Lectures on Kähler geometry, London Math. Soc. Stud. Texts, 69, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[14] Obata M., “The conjectures on conformal transformations of Riemannian manifolds”, J. Differential Geometry, 6 (1971), 247–258 | DOI | MR | Zbl
[15] Pecastaing V., Conformal actions of solvable Lie groups on closed Lorentzian manifolds, arXiv: 2307.05436
[16] Pecastaing V., “Lorentzian manifolds with a conformal action of ${\rm SL}(2,\mathbb{R})$”, Comment. Math. Helv., 93 (2018), 401–439, arXiv: 1609.00358 | DOI | MR | Zbl
[17] Podoksënov M.N., “A Lorentzian manifold with a one-parameter group of homotheties that has a closed isotropic orbit”, Sib. Math. J., 30 (1989), 771–773 | DOI | MR | Zbl
[18] Podoksënov M.N., “Conformally homogeneous Lorentzian manifolds. II”, Sib. Math. J., 33 (1992), 1087–1093 | DOI | MR | Zbl